首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
离子液体在蛋白质萃取分离中的应用   总被引:1,自引:0,他引:1  
离子液体具有独特的物化性质如热稳定性好、不挥发、不易燃和良好的生物兼容性,近年来作为传统有机溶剂的替代物在有机合成、电化学、催化和萃取分离等领域得到了广泛应用。本文简要综述了以离子液体为媒介的萃取体系在蛋白质分离富集和分析中的相关研究和应用进展,包括辅助萃取体系、直接萃取体系、双水相萃取体系、微乳萃取体系、结晶体系和基于离子液体的固相萃取体系等。  相似文献   

2.
智能聚合物的双水相体系在生物分子分离纯化中的应用*   总被引:1,自引:0,他引:1  
屈锋  吕锋华  张慧娟 《化学进展》2010,22(1):125-132
简单地改变智能聚合物组成的双水相体系的外界条件,如温度、酸度、离子强度、光照强度、电场、磁场强度等,就可使成相聚合物与生物分子分离。基于智能聚合物的双水相体系分离过程简单,聚合物材料易于回收。近年来,以智能聚合物组成的双水相体系在分离纯化生物分子的研究中发展迅速。本文简要介绍了双水相萃取的原理,综述了十多年来温度敏感型、酸度敏感型、光敏型和具有亲和功能的双水相体系和双水相萃取与其他相关技术的结合在生物分子分离纯化中的研究进展。  相似文献   

3.
不同离子液体双水相萃取钯   总被引:3,自引:0,他引:3  
为实现贵金属钯的绿色、高效萃取,本文使用有“绿色溶剂”之称的离子液体与磷酸钾形成的双水相体系,不加入其它萃取剂对钯(Ⅱ)进行萃取,并采用浊点法对所研究的6种咪唑类离子液体的双结线和系线进行测定。 结果表明,基于氯离子和溴离子的离子液体成相能力和萃取率无显著差异。 阳离子上支链的疏水性是影响咪唑类离子液体成相能力的关键因素之一。 与不含官能团的离子液体相比,支链上嵌入氨基和腈基的离子液体,成相能力较低,但萃取率分别提高了11.57%和34.26%。 当含腈基的离子液体浓度和磷酸钾浓度分别为5.00%和39.55%时,离子液体双水相体系对钯(Ⅱ)的萃取率可达到100%。 本文的研究成果为设计/选择可利用其双水相体系高效萃取钯(Ⅱ)的离子液体提供了理论基础和数据支持。  相似文献   

4.
近年来,离子液体被广泛应用于生物大分子的萃取分离~([1]).对于液液萃取(包括离子液体微乳和双水相萃取),离子液体消耗量比较大,而且离子液体黏度较大造成其定量操作十分困难,因此离子液体的固载化越来越受到人们重视.  相似文献   

5.
超临界流体萃取分离离子液体与有机物及其相平衡的研究   总被引:6,自引:0,他引:6  
离子液体具有一些优良的物理和化学性质,非常有希望成为传统有机溶剂的替代溶剂.但是如何从过程物流中分离和回收离子液体将是其工业化应用的一个很大挑战.蒸馏、液液萃取和超临界萃取是目前已知的三个可行的方法.其中超临界萃取可应用于离子液体与挥发的或相对不挥发的有机物的分离,而且不存在相间交叉污染.本文从二元体系相平衡、三元体系相平衡、模型化研究和萃取实验结果方面介绍了超临界萃取方法的最新研究进展,在此基础上提出了用超临界丙烷替代超临界二氧化碳作为萃取溶剂的新思路,并探讨了该领域今后的研究方向和工业化前景.  相似文献   

6.
离子液体双水相萃取荧光法测定维生素B6   总被引:1,自引:0,他引:1  
基于离子液体在盐的作用下能够形成双水相,用于目标物质的萃取,提出了离子液体-硫酸铵双水相萃取、荧光法测定痕量维生素B6的新方法.实验探讨了影响维生素B6萃取率的主要因素,如酸度、萃取剂的用量、时间等.在最适条件下,即λex/λem=342/418 nm,pH=8.69,离子液体和硫酸铵的用量分别为1.3mL、2.8g,...  相似文献   

7.
离子液体双水相体系萃取分离牛血清白蛋白   总被引:36,自引:0,他引:36  
邓凡政  郭东方 《分析化学》2006,34(10):1451-1453
建立了由亲水性离子液体四氟硼酸1-甲基-3-丁基咪唑([Bmim]BF4)和KH2PO4形成的双水相体系萃取分离牛血清白蛋白(BSA)的新方法。研究了不同盐及盐的浓度、离子液体浓度以及蛋白质用量、溶液酸度、其它共存物质对双水相成相及BSA萃取率的影响,结果表明,磷酸二氢钾盐浓度为80g/L,离子液体浓度在160~240mL/L,BSA的浓度为30~50mg/L,溶液酸度在pH4~8范围,离子液体双水相体系对BSA有较高的萃取率。用加入不同类型表面活性剂探讨了离子液体与蛋白质之间的作用。  相似文献   

8.
袁立永  彭静  翟茂林 《化学进展》2011,23(7):1469-1477
离子液体因其低挥发性,高热稳定性及在萃取金属离子方面的优良表现被认为是乏燃料后处理中萃取分离放射性核素的新一代绿色溶剂。但从乏燃料后处理强辐射的应用环境来看,需要首先对离子液体及其萃取体系的辐射效应进行系统研究和评估。本文以两种常见的憎水性咪唑离子液体1-丁基-3-甲基咪唑六氟磷酸盐( )和1-丁基-3-甲基咪唑三氟甲基磺酰亚胺酸盐( )为例,综述了我们在离子液体及其萃取体系的γ辐射效应方面的最新研究进展,内容包括纯离子液体在氮气气氛下的辐射效应,硝酸对离子液体辐射效应的影响,离子液体辐解产物的分离分析及γ辐照对离子液体体系萃取金属离子的影响等。基于以上研究对离子液体用于乏燃料后处理的可行性进行了评估,同时对离子液体及其萃取体系的辐射效应研究进行了展望。  相似文献   

9.
离子液体在微萃取方面的应用进展   总被引:2,自引:2,他引:0  
离子液体具有蒸汽压低、热稳定性好、溶解性能高、可设计性和多样性等特性,使其在萃取尤其是微萃取方面得到迅速发展和应用.而在单滴微萃取、分散液相微萃取、液-液-液微萃取和固相微萃取中,离子液体更以其较大的粘度、密度及非挥发性等特性,使得微萃取技术更容易操作,无有机溶剂污染,方法的灵敏度更高,且扩展了微萃取的应用范围.文章综述了近年来离子液体在液相微萃取和固相微萃取方面的应用进展,并对其发展趋势进行了展望.  相似文献   

10.
离子液体双水相萃取分离苋菜红的研究   总被引:12,自引:0,他引:12  
建立了由亲水性离子液体四氟硼酸1-丁基-3-甲基咪唑([Bmim]BF4)和NaH2PO4形成的双水相体系萃取分离苋菜红的新方法.研究了盐的浓度、离子液体浓度、溶液酸度、其它共存物质对苋菜红萃取率的影响.结果表明,NaH2PO4加入量在2~2.5 g,离子液量在1.0~2.0 mL,苋菜红溶液量在1.5 mL,溶液酸度在pH 4~6范围,离子液体双水相体系对苋菜红有较高的萃取率(E%>90).用加入无机离子、不同类型表面活性剂和吸收光谱探讨了离子液体与苋菜红之间的作用.  相似文献   

11.
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid–liquid and gas–liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid–liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents.  相似文献   

12.
Room temperature ionic liquids are regarded as “Green solvents” for their nonvolatile and thermally stable properties. They are employed to replace traditional volatile organic solvents in organic synthesis, solvent extraction, and electrochemistry. In this work, a water immiscible room temperature ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate [C4mim][PF6], was used as an alternative solvent for liquid/liquid extraction of copper ions. Metal chelators, including dithizone, 8‐hydroxyquinoline, and 1‐(2‐pyridylazo)‐2‐naphthol, were employed to form neutral metal‐chelate complexes with copper ions so that copper ions were extracted from aqueous solution into [C4mim][PF6]. The parameters that affect the extraction of copper ions with this biphasic system were investigated. The extraction behavior in this novel biphasic system is shown to be consistent with that of traditional solvents. For example, the extraction with this biphasic system is strongly pH dependent. So, the extraction efficiency of coppers ion from an aqueous phase can be manipulated by tailoring the pH value of the extraction system. Hence, the extraction, separation and preconcentraction of copper ions can be accomplished by controlling the pH value of the extraction system. It appears that the use of ionic liquid as an alternate solvent system in liquid/liquid extraction of copper ions is very promising.  相似文献   

13.
In the past decade, ionic liquids have received great attention owing to their potential as green solvent alternatives to conventional organic solvents. In this work, hydrophobic achiral ionic liquids (1-butyl-3-methylimidazolium-hexafluorophosphate([bmim][PF6]), 1-octyl-3-methylimidazolium tetrafluoroborate([omim][BF4])) were used as solvents in chiral liquid-liquid extraction separation of mandelic acid (MA) enantiomers with β-cyclodextrin (β-CD) derivatives as hydrophilic chiral selectors preferentially forming complexes with (R)-enantiomers. Factors affecting the separation efficiency were optimised, namely the type of the extraction solvents and β-CD derivatives, concentrations of the β-CD derivatives and MA enantiomers, pH, and temperature. Excellent enantioseparation of MA enantiomers was achieved in the ionic liquid aqueous two-phase extraction systems under the optimal conditions of pH 2.5 and temperature of 5°C with the maximum enantioselectivity (α) of 1.74. The experimental results demonstrated that the ionic liquid aqueous two-phase extraction systems with a β-CD derivative as the chiral selector have a strong chiral recognition ability, which might extend the application of ionic liquids in chiral separation.  相似文献   

14.
Room temperature ionic liquids (RTILs) have been used as novel solvents to replace traditional volatile organic solvents in organic synthesis, solvent extraction, and electrochemistry. The hydrophobic character and water immiscibility of certain ionic liquids allow their use in solvent extraction of hydrophobic compounds. In this work, a typical room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6], was used as an alternative solvent to study liquid/liquid extraction of heavy metal ions. Dithizone was employed as a metal chelator to form neutral metal-dithizone complexes with heavy metal ions to extract metal ions from aqueous solution into [C4mim][PF6]. This extraction is possible due to the high distribution ratios of the metal complexes between [C4mim][PF6] and aqueous phase. Since the distribution ratios of metal dithiozonates between [C4mim][PF6] and aqueous phase are strongly pH dependent, the extraction efficiencies of metal complexes can be manipulated by tailoring the pH value of the extraction system. Hence, the extraction, separation, and preconcentraction of heavy metal ions with the biphasic system of [C4mim][PF6] and aqueous phase can be achieved by controlling the pH value of the extraction system. Preliminary results indicate that the use of [C4mim][PF6] as an alternate solvent to replace traditional organic solvents in liquid/liquid extraction of heavy metal ions is very promising.  相似文献   

15.
王梦亮  崔丙健 《分子催化》2011,25(5):427-434
采用苯乙酮为模式底物,选用了3种典型的离子液体作为反应介质系统研究了离子液体与缓冲液构成的均相及两相体系中固定化光合细菌催化不对称还原反应的特性.通过对构建的离子液体反应体系进行条件优化,发现与水相及有机相相比,离子液体作为生物催化反应介质更有利于还原反应的进行,并且离子液体及固定化细胞易回收重复利用.研究结果表明,在...  相似文献   

16.
Process intensification of whole-cell biocatalysis with ionic liquids   总被引:2,自引:0,他引:2  
The unique properties of room temperature ionic liquids such as non-volatility, nonflammability, and, in many cases, high thermal and chemical stability have made them an environmentally attractive alternative to organic solvents. Biphasic biocatalytic processes with nonmiscible liquid phases are usually applied with whole-cell biocatalysts to overcome low water solubility of substrates or products, inhibitory effects of the reactants on the biocatalyst, or low stability of substrates or products in the aqueous phase. The surprising noninvasive effects on cellular membranes of hydrophobic ionic liquids especially of those with hexafluorophosphate and bis(trifluoromethylsulfonyl)imide anions in biphasic ionic liquid/water systems make them superior to many organic solvents so far applied in whole-cell biotransformations. Impressive process intensification in simple biphasic batch processes was recently demonstrated on the examples of asymmetric synthesis with whole-cell biocatalysts, if the distribution coefficients of inhibitory substrates and products between ionic liquids and aqueous phase exceed a log D of about 2 (e.g., ketones and beta-ketoesters with lipophilic side chains and their corresponding chiral alcohols).  相似文献   

17.
In this article, the equilibrium behavior of solutions of 1-ethyl-3-methylimidazolium dimethyl phosphate ([Emim]DMP) and ethyl acetate or acetone in aqueous two-phase system (ATPS) was discussed to understand the liquid–liquid equilibrium (LLE) behavior of these organic solvents. Thus, we determined phase diagrams and LLE data at 303.15, 308.15, 313.15, and 323.15 K for the investigated biphasic systems. Four empirical equations were used to study the tie lines. The results showed that for the [Emim]DMP?+?acetone?+?water biphasic systems within the investigated temperature range, temperature influences the phase behavior, but for the [Emim]DMP?+?ethyl acetate?+?water biphasic systems within the investigated temperature range, there are no notable changes on the phase behavior with rising temperature. The results may have important applications for the separation of antibiotics and for the recovery of ionic liquids (ILs).  相似文献   

18.
This paper presents a biphasic recognition chiral extraction system developed as a new chiral separation technology for the separation of pantoprazole enantiomers, combining a hydrophilic β-CD derivative in the aqueous phase and a hydrophobic tartaric acid in the organic phase which preferentially recognise the (R)-enantiomer and (S)-enantiomer, respectively. In this study, a number of factors which influence the efficiency of the extraction were investigated including types of organic solvents, β-CD and tartaric acid esters and their concentrations, pH and temperature. As a result, enantioselectivity for pantoprazole enantiomers can be improved up to 1.42 under optimised conditions; in addition, it is clear that the combined action of β-CD and tartaric acid esters leads to formation of the biphasic chiral extraction system with a stronger separation capacity than a monophasic chiral extraction system.  相似文献   

19.
Ionic Liquids-New "Solutions" for Transition Metal Catalysis   总被引:2,自引:0,他引:2  
Ionic liquids are salts that are liquid at low temperature (<100 degrees C) which represent a new class of solvents with nonmolecular, ionic character. Even though the first representative has been known since 1914, ionic liquids have only been investigated as solvents for transition metal catalysis in the past ten years. Publications to date show that replacing an organic solvent by an ionic liquid can lead to remarkable improvements in well-known processes. Ionic liquids form biphasic systems with many organic product mixtures. This gives rise to the possibility of a multiphase reaction procedure with easy isolation and recovery of homogeneous catalysts. In addition, ionic liquids have practically no vapor pressure which facilitates product separation by distillation. There are also indications that switching from a normal organic solvent to an ionic liquid can lead to novel and unusual chemical reactivity. This opens up a wide field for future investigations into this new class of solvents in catalytic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号