首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Environmentally friendly halide double perovskites with improved stability are regarded as a promising alternative to lead halide perovskites. The benchmark double perovskite, Cs2AgBiBr6, shows attractive optical and electronic features, making it promising for high‐efficiency optoelectronic devices. However, the large band gap limits its further applications, especially for photovoltaics. Herein, we develop a novel crystal‐engineering strategy to significantly decrease the band gap by approximately 0.26 eV, reaching the smallest reported band gap of 1.72 eV for Cs2AgBiBr6 under ambient conditions. The band‐gap narrowing is confirmed by both absorption and photoluminescence measurements. Our first‐principles calculations indicate that enhanced Ag–Bi disorder has a large impact on the band structure and decreases the band gap, providing a possible explanation of the observed band‐gap narrowing effect. This work provides new insights for achieving lead‐free double perovskites with suitable band gaps for optoelectronic applications.  相似文献   

2.
Environmentally friendly halide double perovskites with improved stability are regarded as a promising alternative to lead halide perovskites. The benchmark double perovskite, Cs2AgBiBr6, shows attractive optical and electronic features, making it promising for high-efficiency optoelectronic devices. However, the large band gap limits its further applications, especially for photovoltaics. Herein, we develop a novel crystal-engineering strategy to significantly decrease the band gap by approximately 0.26 eV, reaching the smallest reported band gap of 1.72 eV for Cs2AgBiBr6 under ambient conditions. The band-gap narrowing is confirmed by both absorption and photoluminescence measurements. Our first-principles calculations indicate that enhanced Ag–Bi disorder has a large impact on the band structure and decreases the band gap, providing a possible explanation of the observed band-gap narrowing effect. This work provides new insights for achieving lead-free double perovskites with suitable band gaps for optoelectronic applications.  相似文献   

3.
Novel inorganic lead‐free double perovskites with improved stability are regarded as alternatives to state‐of‐art hybrid lead halide perovskites in photovoltaic devices. The recently discovered Cs2AgBiBr6 double perovskite exhibits attractive optical and electronic features, making it promising for various optoelectronic applications. However, its practical performance is hampered by the large band gap. In this work, remarkable band gap narrowing of Cs2AgBiBr6 is, for the first time, achieved on inorganic photovoltaic double perovskites through high pressure treatments. Moreover, the narrowed band gap is partially retainable after releasing pressure, promoting its optoelectronic applications. This work not only provides novel insights into the structure–property relationship in lead‐free double perovskites, but also offers new strategies for further development of advanced perovskite devices.  相似文献   

4.
Composition engineering of halide perovskite allows the tunability of the band gap over a wide range so that photons can be effectively harvested, an aspect that is of critical importance for increasing the efficiency of photocatalysis under sunlight. However, the poor stability and the low photocatalytic activity of halide perovskites prevent use of these defect‐tolerant materials in wide applications involving photocatalysis. Here, an alcohol‐based photocatalytic system for dye degradation demonstrated high stability through the use of double perovskite of Cs2AgBiBr6. The reaction rate on Cs2AgBiBr6 is comparable to that on CdS, a model inorganic semiconductor photocatalyst. The fact of fast reaction between free radicals and dye molecules indicates the unique catalytic properties of the Cs2AgBiBr6 surface. Deposition of metal clusters onto Cs2AgBiBr6 effectively enhances the photocatalytic activity. Although the stability (five consecutive photocatalytic cycles without obvious decrease of efficiency) requires further improvements, the results indicate the significant potential of Cs2AgBiBr6‐based photocatalysis.  相似文献   

5.
The double perovskite family, A2MIMIIIX6, is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH3NH3PbI3. Given the generally large indirect band gap within most known double perovskites, band‐gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs2AgBiBr6 as host, band‐gap engineering through alloying of InIII/SbIII has been demonstrated in the current work. Cs2Ag(Bi1−x Mx )Br6 (M=In, Sb) accommodates up to 75 % InIII with increased band gap, and up to 37.5 % SbIII with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs2Ag(Bi0.625Sb0.375)Br6. Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three‐metal systems are also assessed.  相似文献   

6.
Metal halide perovskites, primarily used as optoelectronic devices, have not been applied for electrochemical conversion due to their insufficient stability in moisture. Herein, two bismuth-based perovskites are introduced as novel electrocatalysts to convert CO2 into HCOOH in aqueous acidic media (pH 2.5), exhibiting a high Faradaic efficiency for HCOOH of >80 % in a wide potential range from −0.75 to −1.25 V. Their structural evolution against water was dynamically monitored by in situ spectra. Theoretical calculations further reveal that the formation of intermediate OCHO* on bismuth sites of Cs3Bi2Br9(111) play a pivotal role toward HCOOH production, which has a lower energy barrier than that on Cs2AgBiBr6(001) surfaces. Significantly, CO2 reacts with protons instead of water which can enhance CO2 reduction rate and suppress hydrogen evolution by avoiding carbonate formation in acidic electrolytes. This work paves the way for the extensive investigation of halide perovskites in aqueous systems.  相似文献   

7.
The double perovskite family, A2MIMIIIX6, is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH3NH3PbI3. Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs2AgBiBr6 as host, band-gap engineering through alloying of InIII/SbIII has been demonstrated in the current work. Cs2Ag(Bi1−xMx)Br6 (M=In, Sb) accommodates up to 75 % InIII with increased band gap, and up to 37.5 % SbIII with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs2Ag(Bi0.625Sb0.375)Br6. Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed.  相似文献   

8.
Double perovskites (DPs) with a generic formula A2M′(I)MIIIX6 (A and M are metal ions, and X=Cl, Br, I) are now being explored as potential alternatives to Pb‐halide perovskites for solar cells and other optoelectronic applications. However, these DPs typically suffer from wide (≈3 eV) and/or indirect band gaps. In 2017, a new structural variety, namely layered halide DP Cs4CuSb2Cl12 (CCSC) with bivalent CuII ion in the place of M′(I) was reported, which exhibit a band gap of approximately 1 eV. Here, we report a mechanochemical synthesis of CCSC, its thermal and chemical stability, and magnetic response of CuII d9 electrons controlling the optoelectronic properties. A simple grinding of precursor salts at ambient conditions provides a stable and scalable product. CCSC is stable in water/acetone solvent mixtures (≈30 % water) and many other polar solvents unlike Pb‐halide perovskites. It decomposes to Cs3Sb2Cl9, Cs2CuCl4, and SbCl3 at 210 °C, but the reaction can be reversed back to produce CCSC at lower temperatures and high humidity. A long‐range magnetic ordering is observed in CCSC even at room temperature. The role of such magnetic ordering in controlling the dispersion of the conduction band, and therefore, controlling the electronic and optoelectronic properties of CCSC has been discussed.  相似文献   

9.
Despite their compositional versatility, most halide double perovskites feature large band gaps. Herein, we describe a strategy for achieving small band gaps in this family of materials. The new double perovskites Cs2AgTlX6 (X=Cl ( 1 ) and Br ( 2 )) have direct band gaps of 2.0 and 0.95 eV, respectively, which are approximately 1 eV lower than those of analogous perovskites. To our knowledge, compound 2 displays the lowest band gap for any known halide perovskite. Unlike in AIBIIX3 perovskites, the band‐gap transition in AI2BB′X6 double perovskites can show substantial metal‐to‐metal charge‐transfer character. This band‐edge orbital composition is used to achieve small band gaps through the selection of energetically aligned B‐ and B′‐site metal frontier orbitals. Calculations reveal a shallow, symmetry‐forbidden region at the band edges for 1 , which results in long (μs) microwave conductivity lifetimes. We further describe a facile self‐doping reaction in 2 through Br2 loss at ambient conditions.  相似文献   

10.
Recently, CuI‐ and AgI‐based halide double perovskites have been proposed as promising candidates for overcoming the toxicity and instability issues inherent within the emerging Pb‐based halide perovskite absorbers. However, up to date, only AgI‐based halide double perovskites have been experimentally synthesized; there are no reports on successful synthesis of CuI‐based analogues. Here we show that, owing to the much higher energy level for the Cu 3d10 orbitals than for the Ag 4d10 orbitals, CuI atoms energetically favor 4‐fold coordination, forming [CuX4] tetrahedra (X=halogen), but not 6‐fold coordination as required for [CuX6] octahedra. In contrast, AgI atoms can have both 6‐ and 4‐fold coordinations. Our density functional theory calculations reveal that the synthesis of CuI halide double perovskites may instead lead to non‐perovskites containing [CuX4] tetrahedra, as confirmed by our material synthesis efforts.  相似文献   

11.
The development of high-performance photocatalytic systems for CO2 reduction is appealing to address energy and environmental issues, while it is challenging to avoid using toxic metals and organic sacrificial reagents. We here immobilize a family of cobalt phthalocyanine catalysts on Pb-free halide perovskite Cs2AgBiBr6 nanosheets with delicate control on the anchors of the cobalt catalysts. Among them, the molecular hybrid photocatalyst assembled by carboxyl anchors achieves the optimal performance with an electron consumption rate of 300±13 μmol g−1 h−1 for visible-light-driven CO2-to-CO conversion coupled with water oxidation to O2, over 8 times of the unmodified Cs2AgBiBr6 (36±8 μmol g−1 h−1), also far surpassing the documented systems (<150 μmol g−1 h−1). Besides the improved intrinsic activity, electrochemical, computational, ex-/in situ X-ray photoelectron and X-ray absorption spectroscopic results indicate that the electrons photogenerated at the Bi atoms of Cs2AgBiBr6 can be directionally transferred to the cobalt catalyst via the carboxyl anchors which strongly bind to the Bi atoms, substantially facilitating the interfacial electron transfer kinetics and thereby the photocatalysis.  相似文献   

12.
Although two‐dimensional (2D) metal–halide double perovskites display versatile physical properties due to their huge structural compatibility, room‐temperature ferroelectric behavior has not yet been reported for this fascinating family. Here, we designed a room‐temperature ferroelectric material composed of 2D halide double perovskites, (chloropropylammonium)4AgBiBr8, using an organic asymmetric dipolar ligand. It exhibits concrete ferroelectricity, including a Curie temperature of 305 K and a notable spontaneous polarization of ≈3.2 μC cm?2, triggered by dynamic ordering of the organic cation and the tilting motion of heterometallic AgBr6/BiBr6 octahedra. Besides, the alternating array of inorganic perovskite sheets and organic cations endows large mobility‐lifetime product (μτ=1.0×10?3 cm2 V?1) for detecting X‐ray photons, which is almost tenfold higher than that of CH3NH3PbI3 wafers. As far as we know, this is the first study on an X‐ray‐sensitive ferroelectric material composed of 2D halide double perovskites. Our findings afford a promising platform for exploring new ferroelectric materials toward further device applications.  相似文献   

13.
Two‐dimensional (2D) halide perovskites have attracted significant attention due to their compositional flexibility and electronic diversity. Understanding the structure–property relationships in 2D double perovskites is essential for their development for optoelectronic applications. In this work, we observed the emergence of pressure‐induced emission (PIE) at 2.5 GPa with a broad emission band and large Stokes shift from initially nonfluorescent (BA)4AgBiBr8 (BA=CH3(CH2)3NH3+). The emission intensity increased significantly upon further compression up to 8.2 GPa. Moreover, the band gap narrowed from the starting 2.61 eV to 2.19 eV at 25.0 GPa accompanied by a color change from light yellow to dark yellow. Analysis of combined in situ high‐pressure photoluminescence, absorption, and angle‐dispersive X‐ray diffraction data indicates that the observed PIE can be attributed to the emission from self‐trapped excitons. This coincides with [AgBr6]5? and [BiBr6]3? inter‐octahedral tilting which cause a structural phase transition. High‐pressure study on (BA)4AgBiBr8 sheds light on the relationship between the structure and optical properties that may improve the material's potential applications in the fields of pressure sensing, information storage and trademark security.  相似文献   

14.
Lead‐free halide perovskite nanocrystals (NCs) have drawn wide attention for solving the problem of lead perovskites toxicity and instability. Herein, we synthesize the direct band gap double perovskites undoped and Ag‐doped Cs2NaInCl6 NCs by variable temperature hot injection. The Cs2NaInCl6 NCs have little photoluminescence because of dark self‐trapped excitons (STEs). The dark STEs can be converted into bright STEs by doping with Ag+ to produce a bright yellow emission, with the highest photoluminescence quantum efficiency of 31.1 %. The dark STEs has been directly detected experimentally by ultrafast transient absorption (TA) techniques. The dynamics mechanism is further studied. In addition, the Ag‐doped NCs show better stability than the undoped ones. This result provides a new way to enhance the optical properties of lead‐free perovskites NCs for high‐performance light emitters.  相似文献   

15.
Although two-dimensional (2D) metal–halide double perovskites display versatile physical properties due to their huge structural compatibility, room-temperature ferroelectric behavior has not yet been reported for this fascinating family. Here, we designed a room-temperature ferroelectric material composed of 2D halide double perovskites, (chloropropylammonium)4AgBiBr8, using an organic asymmetric dipolar ligand. It exhibits concrete ferroelectricity, including a Curie temperature of 305 K and a notable spontaneous polarization of ≈3.2 μC cm−2, triggered by dynamic ordering of the organic cation and the tilting motion of heterometallic AgBr6/BiBr6 octahedra. Besides, the alternating array of inorganic perovskite sheets and organic cations endows large mobility-lifetime product (μτ=1.0×10−3 cm2 V−1) for detecting X-ray photons, which is almost tenfold higher than that of CH3NH3PbI3 wafers. As far as we know, this is the first study on an X-ray-sensitive ferroelectric material composed of 2D halide double perovskites. Our findings afford a promising platform for exploring new ferroelectric materials toward further device applications.  相似文献   

16.
Although lead-free halide double perovskites are considered as promising alternatives to lead halide perovskites for optoelectronic applications, state-of-the-art double perovskites are limited by their large bandgap. The doping/alloying strategy, key to bandgap engineering in traditional semiconductors, has also been employed to tune the bandgap of halide double perovskites. However, this strategy has yet to generate new double perovskites with suitable bandgaps for practical applications, partially due to the lack of fundamental understanding of how the doping/alloying affects the atomic-level structure. Here, we take the benchmark double perovskite Cs2AgInCl6 as an example to reveal the atomic-level structure of double perovskite alloys (DPAs) Cs2AgIn1−xFexCl6 (x = 0–1) by employing solid-state nuclear magnetic resonance (ssNMR). The presence of paramagnetic alloying ions (e.g. Fe3+ in this case) in double perovskites makes it possible to investigate the nuclear relaxation times, providing a straightforward approach to understand the distribution of paramagnetic alloying ions. Our results indicate that paramagnetic Fe3+ replaces diamagnetic In3+ in the Cs2AgInCl6 lattice with the formation of [FeCl6]3−·[AgCl6]5− domains, which show different sizes and distribution modes in different alloying ratios. This work provides new insights into the atomic-level structure of bandgap engineered DPAs, which is of critical significance in developing efficient optoelectronic/spintronic devices.

Through Fe3+-alloying, the bandgap of benchmark double perovskite Cs2AgInCl6 can be tuned from 2.8 eV to 1.6 eV. The atomic-level structure of Cs2AgIn1−xFexCl6 was revealed by solid-state nuclear magnetic resonance (ssNMR).  相似文献   

17.
Lead-free double perovskites have emerged as stable and non-toxic alternatives to Pb-halide perovskites. Herein, the synthesis of Fe-doped Cs2AgBiCl6 lead-free double perovskites are reported that display blue emission using an antisolvent method. The crystal structure, morphology, optical properties, band structure, and stability of the Fe-doped double perovskites were investigated systematically. Formation of the Fe-doped Cs2AgBiCl6 double perovskite is confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. XRD and thermo-gravimetric analysis (TGA) shows that the Cs2AgBiCl6 double perovskite has high structural and thermal stability, respectively. Field emission scanning electron microscopy (FE-SEM) analysis revealed the formation of dipyramidal shape Cs2AgBiCl6 crystals. Furthermore, energy-dispersive X-ray spectroscopy (EDS) mapping shows the overlapping of Cs, Bi, Ag, Fe, and Cl elements and homogenous incorporation of Fe in Cs2AgBiCl6 double perovskite. The Fe-doped Cs2AgBiCl6 double perovskite shows a strong absorption at 380 nm. It extends up to 700 nm, suggesting that sub-band gap states transition may originate from the surface defect of the doped perovskite material. The radiative kinetics of the crystals was studied using the time-correlated single-photon counting (TCSPC) technique. Lattice parameters and band gap value of the Fe-doped Cs2AgBiCl6 double perovskites predicted by the density functional theory (DFT) calculations are confirmed by XRD and UV/Visible spectroscopy analysis. Time-dependent photo-response characteristics of the Fe-doped Cs2AgBiCl6 double perovskite show fast response and recovery time of charge carriers. We believe that the successful incorporation of Fe in lead-free, environmentally friendly Cs2AgBiCl6 double perovskite can open a new class of doped double perovskites with significant potential optoelectronics devices fabrication and photocatalytic applications.  相似文献   

18.
环境友好型无铅卤化物钙钛矿太阳能电池研究进展   总被引:1,自引:1,他引:0  
ABX_3(A为甲胺、甲脒等有机离子或铯离子,B为铅或锡等金属离子,X为溴、碘等卤化物离子)卤化物钙钛矿材料具有优异的光电特性,是当前太阳能电池研究的前沿和热点之一。然而,这类太阳能电池普遍面临含毒性元素铅和稳定性差等问题,极大地阻碍了钙钛矿太阳能电池商业化应用进程。因此,发展新型高效无铅钙钛矿太阳能电池势在必行。本文评述了环境友好型无铅卤化物钙钛矿太阳能电池的最新研究动态和进展,探讨了该类太阳能电池的制备、性能及其稳定性等问题,展望了其未来发展趋势。  相似文献   

19.
We show that the onset pressure for appreciable conductivity in layered copper‐halide perovskites can decrease by ca. 50 GPa upon replacement of Cl with Br. Layered Cu–Cl perovskites require pressures >50 GPa to show a conductivity of 10?4 S cm?1, whereas here a Cu–Br congener, (EA)2CuBr4 (EA=ethylammonium), exhibits conductivity as high as 2×10?3 S cm?1 at only 2.6 GPa, and 0.17 S cm?1 at 59 GPa. Substitution of higher‐energy Br 4p for Cl 3p orbitals lowers the charge‐transfer band gap of the perovskite by 0.9 eV. This 1.7 eV band gap decreases to 0.3 eV at 65 GPa. High‐pressure X‐ray diffraction, optical absorption, and transport measurements, and density functional theory calculations allow us to track compression‐induced structural and electronic changes. The notable enhancement of the Br perovskite's electronic response to pressure may be attributed to more diffuse Br valence orbitals relative to Cl orbitals. This work brings the compression‐induced conductivity of Cu‐halide perovskites to more technologically accessible pressures.  相似文献   

20.
Despite the progressive enhancement in the flexibility of Pb-based perovskites for optoelectronic applications, regrettably, they are facing two main challenges; (1) instability, which originates from using organic components in the perovskite structure, and (2) toxicity due to Pb. Therefore, new, stable non-toxic perovskite materials are demanded to overcome these drawbacks. The research community has been working on a wide variety of Pb-free perovskites with different molecular formulas and dimensionality. A variety of Pb-free halide double perovskites have been widely explored by different research groups in search for stable, non-toxic double perovskite material. Especially, Cs-based Pb-free halide double perovskite has been in focus recently. Herein, we present a review of theoretical and experimental research on Cs-based Pb-free double halide perovskites of structural formulas Cs2M+M3+X6 (M+ = Ag+, Na+, In+ etc.; M3+= Bi3+, In3+, Sb3+; X = Cl, Br, I¯) and Cs2M4+X6 (M4+ = Ti4+, Sn4+, Au4+ etc.). We also present the challenges faced by these perovskite compounds and their current applications especially in photovoltaics alongside the effect of metal dopants on their performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号