首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Performance of horizontal copper heaters with a transverse fin structure was investigated for pool boiling heat transfer and critical heat flux limits. Data were obtained for 5.1 and 7.6 cm diameter structured cooper and brass heaters in saturated R-113 boiling at pressures ranging between 0.037 and 1 atm. The fin structure consisted of 0.16 cm×0.16 cm×0.32 cm high square fins with an interfin spacing of 0.16 cm. Following a similar methodology to Haley and Westwater1, a numerical analysis of the heat transfer phenomenon was performed by solving the one-dimensional fin conduction equation with a non-linear heat transfer boundary condition obtained from the previously reported data for R-113 boiling on plain surfaces. The predictions agreed with the data at the 1 atm pressure levels but showed deviations at the low pressure levels. The results showed that, compared with plain surface heaters of the same diameters the finned structured surfaces investigated: (a) decreased the wall temperature differences for a given heat flux and saturated pool boiling conditions, thus improving the nucleate boiling heat transfer coefficients, and (b) increased the critical heat flux limits, calculated as the power input divided by the heater projected area, by a factor of 2–2.5.  相似文献   

2.
 This paper summarises the main results of a research work about the heat transfer enhancement and its theoretical estimation, in the two-phase thermal control with dielectric refrigerant fluids. The authors consider pool boiling applications at atmospheric conditions and without supplementary energy. Two methods are considered to enhance the heat transfer: the use of the finned surfaces and the natural re-circulation of the condensed fluid, pool boiling with controlled return (PBCR). First of all the purpose is to evaluate the possibility of a thermal dissipation comparable with the one obtainable by means of the boiling water at atmospheric pressure, about 1 MW/m2; secondly, to increase the knowledge about the burn-out incipience. A detailed experimental analysis of the burn-out incipience is performed using a single fin. Moreover the objective is to propose theoretical methods to estimate the critical heat flux related to finned surfaces as well as a possible approach to perform a “nearly optimum” design of fins and fin arrays in pool boiling. Received on 17 January 2000  相似文献   

3.
Experimental measurements were carried out on the boiling heat transfer characteristics of γ-Al2O3/water and SnO2/water Newtonian nanofluids. Nanofluids are liquid suspensions containing nanoparticles with sizes smaller than 100 nm. In this research, suspensions with different concentrations of γ-Al2O3 and SnO2 nanoparticles in water were studied under nucleate pool boiling heat transfer conditions. Results show that nanofluids possess noticeably higher boiling heat transfer coefficients than the base fluid. The boiling heat transfer coefficients depend on the type and concentration of nanoparticles.  相似文献   

4.
In the work an approach to avoid a circumferential temperature distribution existing during nucleate pool boiling on a horizontal cylinder within low heat flux densities is presented. The idea of the approach is local heat transfer enhancement by a porous layer application on a part of the heating surface. An experiment on nucleate pool boiling heat transfer from horizontal cylinders to saturated R141b and water under atmospheric pressure is reported. Experiments have been conducted using stainless steel tubes with the outside diameter between 8 mm and 23 mm with the active length of 250 mm. The outside surface of the tubes was smooth or partially coated with a porous metallic layer. In particular, measurements of inside circumferential temperature distribution have been performed.  相似文献   

5.
A semi-analytical model is developed for the prediction of flow boiling heat transfer inside vertical porous coated tubes. The model assumes that the forced convection and nucleate boiling coexist together in the annular flow regime. Conservations of mass, momentum, and energy are used to solve for the liquid film thickness and temperature. The heat flux due to nucleate boiling consists of those inside and outside micro-tunnels. To close the equations, a detailed analysis of various forces acting on the bubble is presented to predict its mean departure diameter. The active nucleation site density of porous layer is determined from the pool boiling correlation by introducing suppression factor. The flow boiling heat transfer coefficients of organic fluid (cumene) with high saturation temperature in a vertical flame-spraying porous coated tube are studied numerically. It is shown that the present model can predict most of the experimental values within ±20%. The numerical results also indicate that the nucleate boiling contribution to the overall heat transfer coefficient decreases from 50% to 15% with vapor quality increasing from 0.1 to 0.5.  相似文献   

6.
Simple correlationsh=C·qn for experimental results in nucleate pool boiling often exhibit a wide scatter in the constant and the exponent. Among the many parameters responsible, an effect from confining boundaries causing flow recirculation, cannot be excluded. Heat transfer experiments were performed in a cylindrical and rectangular vessel on finned tubes in a single and twin arrangement. The cylindrical vessel had a smaller fluid cross section area than the rectangular vessel. Although the tubes were identical in geometry (except for length) and surface roughness, they yielded clearly different results. The heat transfer coefficients in the cylindrical vessel were always larger than in the rectangular one.  相似文献   

7.
We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found that a reduction of the pool diameter leads to an enhancement of the nucleate boiling heat flux for most of the boiling curve. Our experimental results indicate that this enhancement is not affected by the depth of the boiling pot, the material of the bounding wall, or the diameter of the inlet water supply. High-speed camera imaging shows that the heat transfer enhancement for the spatially confined pool boiling occurs in conjunction with a stable circulating flow, which is in contrast to the chaotic and mainly upward motion for boiling in larger pool diameters. An explanation for the enhancement of the heat transfer and the associated change in flow pattern is found in the singularisation of the nucleate boiling process.  相似文献   

8.
Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experiments. The refrigerant-based nanofluid was formed from Cu nanoparticles and refrigerant R113. The test surface is horizontal with the average roughness of 1.6 μm. Test conditions include a saturation pressure of 101.3 kPa, heat fluxes from 10 to 80 kW m−2, surfactant concentrations from 0 to 5000 ppm (parts per million by weight), and nanoparticle concentrations from 0 to 1.0 wt.%. The experimental results indicate that the presence of surfactant enhances the nucleate pool boiling heat transfer of refrigerant-based nanofluid on most conditions, but deteriorates the nucleate pool boiling heat transfer at high surfactant concentrations. The ratio of nucleate pool boiling heat transfer coefficient of refrigerant-based nanofluid with surfactant to that without surfactant (defined as surfactant enhancement ratio, SER) are in the ranges of 1.12-1.67, 0.94-1.39, and 0.85-1.29 for SDS, CTAB and Span-80, respectively, and the values of SER are in the order of SDS > CTAB > Span-80, which is opposite to the order of surfactant density values. The SER increases with the increase of surfactant concentration and then decreases, presenting the maximum values at 2000, 500 and 1000 ppm for SDS, CTAB and Span-80, respectively. At a fixed surfactant concentration, the SER increases with the decrease of nanoparticle concentration. A nucleate pool boiling heat transfer correlation for refrigerant-based nanofluid with surfactant is proposed, and it agrees with 92% of the experimental data within a deviation of ±25%.  相似文献   

9.
 The time dependent performance of extended surfaces subjected to fouling is addressed in this work. Where fins are used for augmenting boiling heat transfer, the interaction of local values of temperature excess, fouling resistance and surface characteristics of the deposit can be quite complex. Taking typical asymptotic fouling growth parameters from literature for reverse solubility salts, three kinds of fin geometry are analysed – rectangular, triangular and annular. For various values of the fin parameter mL, the temperature distribution and variation of fouling resistance are obtained as a function of time. To interpret the performance of a fouled fin, a new term `cleanliness efficiency' is introduced. The necessity of choosing an optimal value of mL for the fin is also highlighted here. It is shown that for all three fin configurations, cleanliness efficiency differs little, thus simplifying the geometry dependence. The approach set out in this work will help in the design of finned heat exchangers subjected to fouling and thereby minimise their overdesign. Received on 12 July 2000  相似文献   

10.
This paper presents the comparative studies on the effect of duct height on heat transfer and flow behavior between co-angular and co-rotating type finned surface in duct. Experiments were performed to investigate the effect of duct height on heat transfer enhancement of a surface affixed with arrays (7 × 7) of short rectangular plate fins of a co-angular and a co-rotating type pattern in the duct. An infrared imaging system with the camera of TVS 8000 was used to measure the temperature distributions to calculate the local heat transfer coefficients of the representative fin regions. Pressure drop and heat transfer experiments were performed for both types of fin pattern varying the duct to fin height ratio (H d/H f) of 2.0–5.0. The friction factor calculated from the pressure drop shows that friction factor decreases with increasing the duct to fin height ratio (H d/H f) regardless of fin pattern and this is expected because the larger friction occurs for smaller duct to fin height ratios. Detailed heat transfer distribution gives a clear picture of heat transfer characteristics of the overall surface as well as the influence of the duct height. In addition, different flow behavior and flow structure developed by both patterns were visualized by the smoke flow visualization technique.  相似文献   

11.
Nucleate pool boiling of ZrO2 based aqueous nanofluid has been studied. Though enhancement in nucleate boiling heat transfer has been observed at low volume fraction of solid dispersion, the rate of heat transfer falls with the increase in solid concentration and eventually becomes inferior even to pure water. While surfactants increase the rate of heat transfer, addition of surfactant to the nanofluid shows a drastic deterioration in nucleate boiling heat transfer. Further, the boiling of nanofluid renders the heating surface smoother. Repeated runs of experiments with the same surface give a continuous decrease in the rate of boiling heat transfer.  相似文献   

12.
In this investigation, a large number of experiments have been performed to determine saturated nucleate pool boiling heat transfer coefficients of MEA/water and DEA/water binary mixtures and that of water/MEA/DEA ternary mixtures. These heat transfer coefficients have been measured at atmospheric pressure and over a wide range of heat fluxes and solution concentrations. The heat flux has been varied in 14 different levels from 7 to about 230 kW/m2 and amines concentration has been changed in 10 different levels from zero to 84 wt%. Results show that strong reduction of heat transfer coefficient occurs as a result of mass transfer interference in this phenomenon. Furthermore, in this study, all the correlations proposed during the last years for the prediction of nucleate boiling heat transfer coefficient of mixtures have been categorized in three groups. Some experimental results have been compared with the most accurate representatives of these three groups and the corresponding RMS errors have been calculated. Also, impacts of important existing parameters in these correlations like ideal heat transfer coefficient (hid.) on the prediction have been discussed.  相似文献   

13.
Variation in degree of surface wettability is presented through the application of Cooper’s correlative approach (h ∝ M −0.5 q w ″0.67) for computing enhancement (ϕ) in nucleate pool boiling of aqueous solutions of SDS and Triton X-100 and its presentation with Marangoni parameter (χ) that represents the dynamic convection effects due to surface tension gradients. Dynamic spreading coefficient defined as σ dyn N a , which relates spreading and wetting characteristics with the active nucleation site density on the heated surface and bubble evolution process, represents cavity filling and activation process and eliminates the concentration dependence of nucleate pool boiling heat transfer in boiling of aqueous surfactant solutions. Using the dynamic spreading coefficient (σ dyn N a  = 0.09q w ″0.71), correlation predictions within ±15% for both SDS and Triton X-100 solutions for low heat flux boiling condition (q w ≤ 100 kW/m2) characterised primarily by isolated bubble regime are presented.  相似文献   

14.
Subcooled flow boiling heat transfer for refrigerant R-134a in vertical cylindrical tubes with 0.83, 1.22 and 1.70 mm internal diameter was experimentally investigated. The effects of the heat flux, q″ = 1–26 kW/m2, mass flux, G = 300–700 kg/m2 s, inlet subcooling, ΔTsub,i = 5–15 °C, system pressure, P = 7.70–10.17 bar, and channel diameter, D, on the subcooled boiling heat transfer were explored in detail. The results are presented in the form of boiling curves and heat transfer coefficients. The boiling curves evidenced the existence of hysteresis when increasing the heat flux until the onset of nucleate boiling, ONB. The wall superheat at ONB was found to be essentially higher than that predicted with correlations for larger tubes. An increase of the mass flux leads, for early subcooled boiling, to an increase in the heat transfer coefficient. However, for fully developed subcooled boiling, increases of the mass flux only result in a slight improvement of the heat transfer. Higher inlet subcooling, higher system pressure and smaller channel diameter lead to better boiling heat transfer. Experimental heat transfer coefficients are compared to predictions from classical correlations available in the literature. None of them predicts the experimental data for all tested conditions.  相似文献   

15.
16.
Zusammenfassung Wärmeübergangsmessungen beim Blasensieden von Hexan an einem Glattrohr und einem Rippenrohr aus Stahl mit großem Durchmesser und großer, einheitlicher Oberflächenrauhigkeit zeigen, daß die Wärmeübergangskoeffizienten an der äußeren Rippenrohroberfläche bei hohen Wärmestromdichten größer sind als am Glattrohr und bei Annäherung an die freie Konvektion ohne Blasen allmählich auf die Glattrohrwerte abnehmen. Zusatzmessungen mit einem Glattrohr erheblich kleineren Durchmessers lassen den Schluß zu, daß die Variation des Rohrdurchmessers vor allem den Anstieg des Wärmeübergangskoeffizientenn mit der Wärmestromdichte verändert, die relative Druckabhängigkeit und die Absolutwerte von bei mittleren Wärmestromdichten dagegen weitgehend unbeeinflußt läßt.
Influence of surface roughness and tube diameter on pool boiling at single plain and finned tubes
Heat transfer with pool boiling of hexane was measured for single plain and finned steel tubes with great diameter and very rough, sandblasted surface. The results show that the heat transfer coefficients calculated for the outer surfaces of both tubes are higher in the case of the finned tube at high heat fluxes, and gradually diminish down to the values of the plain tube until natural convection without bubble formation has been reached. Additional measurements using a plain tube with much smaller diameter but identical surface treatment indicate that great differences of the tube diameter influence the increase of the heat transfer coefficient with heat flux significantly, the relative pressure dependence and the absolute values of the heat transfer coefficient at intermediate heat fluxes, however, are concerned on a smaller scale.


Herrn Prof. Dr.-Ing. K. Stephan zum 60. Geburtstag gewidmet  相似文献   

17.
The influence of oil on nucleate pool boiling heat transfer   总被引:1,自引:0,他引:1  
The influence of various oil contents in R134a is investigated for nucleate pool boiling on copper tubes either sandblasted or with enhanced heating surfaces (GEWA-B tube). Polyolester oils (POE) (Reniso Triton) with medium viscosity 55 cSt (SE55) and high viscosity 170 cSt (SE170) were used. Heat transfer coefficients were obtained for boiling temperatures between −28.6 and +20.1°C. The oil content varied from 0 to 5% mass fraction. For the sandblasted tube and the SE55 oil the heat transfer coefficients for the refrigerant/oil-mixture can be higher or lower than those for the pure refrigerant, depending on oil mass fraction, boiling temperature and heat flux. In some cases the highest heat transfer coefficients were obtained at a mass fraction of 3%. For the 170 cSt oil there is a clear decrease in heat transfer for all variations except for a heat flux 4,000 W/m2 and −10.1°C at 0.5% oil content. The heat transfer coefficients are compared to those in the literature for a smooth stainless steel tube and a platinum wire. For the enhanced tube and 55 cSt oil the heat transfer coefficients are clearly below those for pure refrigerant in all cases. The experimental results for the sandblasted tube are compared with the correlation by Jensen and Jackman. The calculated values are within +20 and −40% for the medium viscosity oil and between +50% and −40% for the high viscosity oil. A correlation for predicting oil-degradation effects on enhanced surfaces does not exist.  相似文献   

18.
Heat transfer in flooded evaporators of the refrigeration, air conditioning or process industries is mainly enhanced by modifying the surface structure of evaporator tubes in the micro and/or macro range. To quantify the effect of such modifications, however, the influence of the basic roughness structure on the heated surface has to be separated. Starting from recent publications, experimental results of heat transfer and bubble formation from horizontal copper tubes with different outer diameters (8 or 25 mm) and roughness structures to various boiling liquids are analyzed in this paper to improve our knowledge of the specific events connected with the formation of bubbles at active nucleation sites and their effect on local heat transfer. It is shown that a single, standardized roughness parameter like the (integral) mean roughness height P a is not sufficient to explain the effect of the heating surface structure on nucleate boiling heat transfer. Instead, detailed information on characteristic roughness parameters of the heated surfaces is necessary for the analysis, making it possible to define the size and form of cavities included in the roughness structure and their positions on the surface. An analysis that aims in this direction is given in a separate contribution to this special issue by A. Luke, who prepared the surfaces and provided the basic data on the set of standardized roughness parameters, the probability distributions of which are used in this paper.  相似文献   

19.
The convective boiling characteristics of dilute dispersions of CuO nanoparticles in water/ethylene glycol as a base fluid were studied at different operating conditions of (heat fluxes up to 174 kW m?2, mass fluxes range of 353–1,059 kg m?2 s?1 and sub-cooling level of 343, 353 and 363 K) inside the annular duct. The convective boiling heat transfer coefficients of nanofluids in different concentrations (vol%) of nanoparticles (0.5, 1, and 1.5) were also experimentally quantified. Results demonstrated the significant augmentation of heat transfer coefficient inside the region with forced convection dominant mechanism and deterioration of heat transfer coefficient in region with nucleate boiling dominant heat transfer mechanism. Due to the scale formation around the heating section, fouling resistance was also experimentally measured. Experimental data showed that with increasing the heat and mass fluxes, the heat transfer coefficient and fouling resistance dramatically increase and rate of bubble formation clearly increases. Obtained results were then compared to some well-known correlations. Results of these comparisons demonstrated that experimental results represent the good agreement with those of obtained by the correlations. Consequently, Chen correlation is recommended for estimating the convective flow boiling heat transfer coefficient of dilute CuO-water/ethylene glycol based nanofluids.  相似文献   

20.
Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (Do = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号