首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The atomic structure of Cs atoms adsorbed on the Si(0 0 1)(2 × 1) surface has been investigated by coaxial impact collision ion scattering spectroscopy. When 0.5 ML of Cs atoms are adsorbed on Si(0 0 1) at room temperature, it is found that Cs atoms occupy a single absorption site on T3 with a height of 3.18 ± 0.05 Å from the second layer of Si(0 0 1)(2 × 1) surface, and the bond length between Cs and the nearest Si atoms is 3.71 ± 0.05 Å.  相似文献   

2.
Y. Fukaya  A. Kawasuso 《Surface science》2006,600(16):3141-3146
The atomic structure of Si(1 1 1)-√21 × √21-Ag surface, which is formed by the adsorption of small amount of Ag atoms on the Si(1 1 1)-√3 × √3-Ag surface, was determined by using reflection high-energy positron diffraction. The rocking curve measured from the Si(1 1 1)-√21 × √21-Ag surface was analyzed by means of the intensity calculations based on the dynamical diffraction theory. The adatom height of the extra Ag atoms from the underlying Ag layer was determined to be 0.53 Å with a coverage of 0.14 ML, which corresponds to three atoms in the √21 × √21 unit cell. From the pattern analyses, the most appropriate adsorption sites of the extra Ag atoms were proposed.  相似文献   

3.
Y. Fukaya  A. Kawasuso 《Surface science》2007,601(22):5187-5191
The Au adsorption induced √21 × √21 super-lattice structure on the Si(1 1 1)-√3 × √3-Ag structure has been investigated using reflection high-energy positron diffraction. The height of the Au adatom was determined to be 0.59 Å from the underlying Ag layer from the rocking curve analysis with the dynamical diffraction theory. The adatoms were preferentially situated at the center of the large Ag triangle of the inequivalent triangle structure of the Si(1 1 1)-√3 × √3-Ag substrate. From the intensity distribution in the fractional-order Laue zone, the in-plane coordinate of the Au adatoms was obtained.  相似文献   

4.
Surface chemistry of nitrobenzene on Si(1 0 0)-2 × 1 has been investigated using multiple internal reflection Fourier-transform infrared spectroscopy (MIR-FTIR), Auger electron spectroscopy (AES) and thermal desorption mass spectrometry. Molecular adsorption of nitrobenzene at submonolayer coverages is dominating at cryogenic temperatures (100 K). As the surface temperature is increased to 160 K, chemical reaction involving nitro group occurs, while the phenyl entity remains intact. Thus, a barrier of approximately 40.8 kJ/mol is established for the interaction of the nitro group of nitrobenzene with the Si(1 0 0)-2 × 1 surface. Further annealing of the silicon surface leads to the decomposition of nitrobenzene. The concentration of nitrogen and oxygen remains constant on a surface within the temperature interval studied here. AES studies also suggest that the majority of carbon-containing products remain bound to the surface at temperatures as high as 1000 K. The only chemical reaction leading to the release of the gaseous products is benzene formation around 670 K. The amount of benzene accounts only for a few percent of the surface species, while the rest of the phenyl groups connected to the silicon surface via a nitrogen linker remain stable even at elevated temperatures, opening an opportunity for stable surface coatings.  相似文献   

5.
The growth of ultrathin ZrO2 films on Si(1 0 0)-(2 × 1) and Si(1 1 1)-(7 × 7) has been studied with core level photoelectron spectroscopy and X-ray absorption spectroscopy. The films were deposited sequentially by chemical vapor deposition in ultra-high vacuum using zirconium tetra-tert-butoxide as precursor. Deposition of a > 50 Å thick film leads in both cases to tetragonal ZrO2 (t-ZrO2), whereas significant differences are found for thinner films. On Si(1 1 1)-(7 × 7) the local structure of t-ZrO2 is not observed until a film thickness of 51 Å is reached. On Si(1 0 0)-(2 × 1) the local geometric structure of t-ZrO2 is formed already at a film thickness of 11 Å. The higher tendency for the formation of t-ZrO2 on Si(1 0 0) is discussed in terms of Zr-O valence electron matching to the number of dangling bonds per surface Si atom. The Zr-O hybridization within the ZrO2 unit depends furthermore on the chemical composition of the surrounding. The precursor t-butoxy ligands undergo efficient C-O scission on Si(1 0 0), leaving carbonaceous fragments embedded in the interfacial layer. In contrast, after small deposits on Si(1 1 1) stable t-butoxy groups are found. These are consumed upon further deposition. Stable methyl and, possibly, also hydroxyl groups are found on both surfaces within a wide film thickness range.  相似文献   

6.
The adsorption of calcium (Ca) atoms on a Cu(0 0 1) surface has been studied by low-energy electron diffraction (LEED) at 130, 300 and 400 K. It is found that a (4 × 4) was the only LEED pattern appeared at 400 K while a quasi-hexagonal structure was formed in a wide range of submonolayer coverage at 130 K. At 300 K, the (4 × 4) LEED spots were broad and weak. The (4 × 4) structure formed at 400 K was determined by a tensor LEED I-V analysis. It is a new-type of surface alloys consisting of five substitutional Ca atoms, nine surface Cu atoms, and two atomic vacancies in the unit cell. In spite of a quite large size-difference between Ca (3.94 Å) and Cu (2.55 Å) atoms, all Ca atoms are located at the substitutional sites. Among surface alloys so far reported, the atomic size ratio between Cu and Ca in the (4 × 4), 1.54, is the largest. Optimized structural parameters reveal that large lateral displacements of surface Cu atoms, being enabled by the appearance of the vacancies, allow the formation of the (4 × 4) structure.  相似文献   

7.
We have studied the growth of Ag on Ge/Si(1 1 1) substrates. The Ge/Si(1 1 1) substrates were prepared by depositing one monolayer (ML) of Ge on Si(1 1 1)-(7 × 7) surfaces. Following Ge deposition the reflection high energy electron diffraction (RHEED) pattern changed to a (1 × 1) pattern. Ge as well as Ag deposition was carried out at 550 °C. Ag deposition on Ge/Si(1 1 1) substrates up to 10 ML has shown a prominent (√3 × √3)-R30° RHEED pattern along with a streak structure from Ag(1 1 1) surface. Scanning electron microscopy (SEM) shows the formation of Ag islands along with a large fraction of open area, which presumably has the Ag-induced (√3 × √3)-R30° structure on the Ge/Si(1 1 1) surface. X-ray diffraction (XRD) experiments show the presence of only (1 1 1) peak of Ag indicating epitaxial growth of Ag on Ge/Si(1 1 1) surfaces. The possibility of growing a strain-tuned (tensile to compressive) Ag(1 1 1) layer on Ge/Si(1 1 1) substrates is discussed.  相似文献   

8.
The surface structure of Si(1 1 1)-6 × 1-Ag was investigated using surface X-ray diffraction techniques. By analyzing the CTR scattering intensities along 00 rod, the positions of the Ag and reconstructed Si atoms perpendicular to the surface were determined. The results agreed well with the HCC model proposed for a 3 × 1 structure induced by alkali-metals on a Si(1 1 1) substrate. The heights of the surface Ag and Si atoms did not move when the surface structure changed from Si(1 1 1)-√3 × √3-Ag to Si(1 1 1)-6 × 1-Ag by the desorption of the Ag atoms. From the GIXD measurement, the in-plane arrangement of the surface Ag atoms was determined. The results indicate that the Ag atoms move large distances at the phase transition between the 6 × 1 and 3 × 1 structures.  相似文献   

9.
We studied the low temperature (T ? 130 K) growth of Ag on Si(0 0 1) and Si(1 1 1) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (√3 × √3)R30° LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(1 1 1)(√3 × √3)R30°Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (√3 × √3)R30°Ag flat terraces in between. On Si(0 0 1) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(0 0 1)-2 × 1 with a twinned Ag(1 1 1) structure at coverage’s as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(1 0 0) surfaces has been studied as a function of temperature (40-300 K).  相似文献   

10.
Chemistry of organoaluminum compounds on silicon surfaces forms a foundation of chemical vapor deposition (CVD) for the formation of metal-semiconductor interconnects. We have applied multiple internal reflection Fourier-transform infrared spectroscopy and thermal desorption mass spectrometry to analyze the chemistry of one of the promising Al-CVD precursors, diethylaluminum hydride, on a Si(1 0 0)-2 × 1 surface. Diethylaluminum hydride adsorbs molecularly on this surface both at room temperature and at 100 K. Thermally induced surface reaction consumes the monolayer of adsorbed organoaluminum molecule. The only hydrocarbon product is ethylene desorbing from the silicon surface around 600 K. Despite a clean reaction that removes carbon from the surface, aluminum deposition is not significant because of the formation of alane products.  相似文献   

11.
Na adsorption at room temperature causes the Na/Si(1 1 1)3 × 1 surface with Na coverage of 1/3 monolayer (ML) to transit into the Na/Si(1 1 1)6 × 1 surface at 1/2 ML and sequentially into the Na/Si(1 1 1)3 × 1 surface at 2/3 ML. The phase transition was studied by Si 2p core-level photoemission spectroscopy. The detailed line shape analysis of the Si 2p core-level spectrum of the Na/Si(1 1 1)3 × 1 surface (2/3 ML) is presented and compared to the Na/Si(1 1 1)3 × 1 surface (1/3 ML) which is composed of Si honeycomb chain-channel structures. This suggests that as additional Na atoms form atomic chains resulting in the Na/Si(1 1 1)3 × 1 surface (2/3 ML), the inner atoms of the Si honeycomb chain-channel structure is buckled due to the additional Na atoms.  相似文献   

12.
The growth of thin K films on Si(1 1 1)-7 × 7 has been investigated by selecting the input and output polarizations of second-harmonic generation (SHG) at room temperature (RT) and at an elevated temperature of 350 °C. The SH intensity at 350 °C showed a monotonic increase with K coverages up to a saturated level, where low energy electron diffraction (LEED) showed a 3 × 1 reconstructed structure. The additional deposition onto the K-saturated surface at 350 °C showed only a marginal change in the SH intensity. These variations are different from the multi-component variations up to 1 ML and orders of magnitude increase due to excitation of plasmons in the multilayers at RT. The variations of SHG during desorption of K at 350 °C showed a two-step decay with a marked shoulder which most likely corresponds to the saturation K coverage of the Si(1 1 1)-3 × 1-K surface. The dominant tensor elements contributing to SHG are also identified for each surface.  相似文献   

13.
The surface atomic structure of Bi on Au(1 1 1) is studied with scanning tunneling microscopy. At about 0.5 monolayer of Bi, a well-ordered 6 × 6 atomic structure is observed. The structure has three notable features: corner holes, Bi adatoms, and stacking faults, very similar to a semiconductor surface of Si(1 1 1)-7 × 7. Out of 18 Bi surface atoms in a unit cell, six atoms are at hollow sites and are adatoms, and another six atoms are near-bridge sites. The last six atoms surround corner holes and are lower than other surface atoms by about 0.2 Å. A possible atomic model is proposed based on our observation.  相似文献   

14.
We have investigated the electronic structure of the Yb/Si(1 1 1)-(3 × 2) surface using angle-resolved photoelectron spectroscopy. Five surface states have been identified in the gap of the bulk band projection. Among these five surface state, the dispersions of three of them agree well with those of the surface states of monovalent atom adsorbed Si(1 1 1)-(3 × 1) surfaces. The dispersions of the two other surface states agree well with those observed on the Ca/Si(1 1 1)-(3 × 2) surface, whose basic structure is the same as that of monovalent atom adsorbed Si(1 1 1)-(3 × 1) surfaces. Taking these results into account, we conclude that the five surface states observed in the band gap originate from the orbitals of Si atoms that form a honeycomb-chain-channel structure.  相似文献   

15.
Structural and electronic properties of self-assembled monolayer with 4-(4-amino-phenylazo) benzoic acid (APABA) on the Si(0 0 1)-(4 × 2) surface are investigated by ab initio calculation based on density functional theory. For the APABA chemisorption on the silicon surface, we have assumed two different binding sites: (i) amino group of molecule and (ii) carboxyl group of molecule. Considering amino-site, we have assumed two possible models for the chemisorption of molecules on the Si(0 0 1)-(4 × 2) surface: (i) an intrarow position between two neighboring Si dimers in the same dimer row (Model I), (ii) on-dimer position (Model II). We have found that Model II is 1.10 eV energetically more favorable than Model I. The Si-N bond length was calculated as 1.85 Å which is in excellent agreement with the sum of the corresponding covalent radii of 1.87 Å. Considering carboxyl-site, we have assumed exactly the same model as mentioned above. Again we have found that Model II is energetically favorable than Model I. The calculated bond lengths for Si-O and O-C are 1.76 and 1.35 Å, respectively.  相似文献   

16.
In this work ultrathin iron silicide epilayers were obtained by the reaction of iron contaminants with the Si(1 1 1) substrate atoms during high-temperature flash. After repeated flashing at about 1125 °C, reflection high-energy electron diffraction indicated silicide formation. Scanning tunneling microscopy revealed highly ordered surface superstructure interrupted, however, by a number of extended defects. Atomic-resolution bias-dependent imaging demonstrated a complex nature of this superstructure with double-hexagonal symmetry and (2√3×2√3)-R30° periodicity. Among the possible candidate phases, including metastable FeSi2 with a CaF2 structure and FeSi1+x with a CsCl structure, the best match of the interatomic distances to the measured 14.4 Å × 14.4 Å unit cell dimensions pointed to the hexagonal Fe2Si (Fe2Si prototype) high-temperature phase. The fact that this phase was obtained by an unusually high-temperature flash, and that neither its reconstruction nor its semiconducting band-gap of about 1.0 ± 0.2 eV (as deduced form the I-V curves obtained by scanning tunneling spectroscopy) has ever been reported, supports such identification. Due to its semiconducting properties, this phase may attract interest, perhaps as an alternative to β-FeSi2.  相似文献   

17.
The surface bonding arrangement in nearly all the confirmed reconstructions of InAs(0 0 1) and GaAs(0 0 1) have only two types of hybridization present. Either the bonds are similar to those in the bulk and the surface atoms are sp3 hybridized or the surface atoms are in a tricoordinated bonding arrangement and are sp2 hybridized. However, dicoordinated In atoms with sp hybridization are observed on the InAs(0 0 1), In-rich, room temperature and low temperature surfaces. Scanning tunneling microscopy (STM) images of the room temperature (300 K) InAs(0 0 1) surface reveal that the In-rich surface reconstruction consists of single-atom rows with areas of high electron density that are separated by ∼4.3 Å. The separation in electron density is consistent with rows of undimerized, sp hybridized, In atoms, denoted as the β3′(4 × 2) reconstruction. As the sample is cooled to 77 K, the reconstruction spontaneously changes. STM images of the low temperature surface reveal that the areas of high electron density are no longer separated by ∼4.3 Å but instead by ∼17 Å. In addition, the LEED pattern changes from a (4 × 2) pattern to a (4 × 4) pattern at 77 K. The 77 K reconstruction is consistent with two (4 × 2) subunit cells; one that contains In dimers on the row and another subunit cell that contains undimerized, sp hybridized, In atoms on the row. This combination of dimerized and undimerized subunit cells results in a new unit cell with (4 × 4) periodicity, denoted as the β3(4 × 4) reconstruction. Density functional theory (DFT) and STM simulations were used to confirm the experimental findings.  相似文献   

18.
Intermixed structures for alkalis (larger than Li) on close-packed substrates have previously been observed only on Al(1 1 1). This study shows that K forms an ordered intermixed structure on Pb(1 1 1). The structures of clean Pb(1 1 1) and Pb(1 1 1)-(√3 × √3)R30°-K were studied using dynamical low-energy electron diffraction (LEED). The clean Pb(1 1 1) surface at 47 K was found to be a relaxed version of the bulk structure, in agreement with an earlier study of the same surface [Y.S. Li, F. Jona, P.M. Marcus, Phys. Rev. B 43 (1991) 6337]. At room temperature, adsorption of K on this surface results in a (√3 × √3)R30° structure, which was shown using dynamical LEED to consist of K atoms substituted in surface vacancies. The K-Pb bond length was found to be 3.62 ± 0.3 Å, with no significant change to the Pb interlayer spacings.  相似文献   

19.
Pentacene films on Si(1 0 0)-(2 × 1) surface at 300 K were investigated using near edge X-ray absorption fine structure (NEXAFS) at the carbon K-edge. NEXAFS spectra show that pentacene molecules are chemisorbed on the Si(1 0 0)-(2 × 1) surface for monolayer with flat-laying and predominantly physisorbed on the Si(1 0 0)-(2 × 1) surface for multilayer films with an upright molecular orientation. Absorption angle of pentacene molecules were measured through π transition. The angles between the double bond and the silicon surface were 35-55°, 65° and 76° at monolayer, 24 and 48 nm pentacene deposited on the Si(1 0 0) surface, respectively. We observed that the intermediate flat-laying phase is favored for monolayer coverage, while the films of molecules standing perpendicular to the Si(1 0 0) surface are favored for multilayer coverage.  相似文献   

20.
This study investigated the dynamics of copper atoms adsorbed on Si(1 1 1)-7 × 7 surfaces between 300 K and 623 K using a variable-temperature scanning tunneling microscope (STM). The diffusion behavior of copper clusters containing up to ∼6 atoms into a particular half unit cell of the 7 × 7 reconstructed Si(1 1 1) surface was considered. The movements and the formation of copper clusters were tracked in detail. The activation energies and pre-exponential factors for various diffusion paths were estimated. Finally, the Cu-etching-Si process and the quasi-5 × 5 incommensurated phase of Cu/Si islands were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号