首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The purpose of this work is to reveal the effects of fuel temperatures and ambient gas conditions on the spray-atomization behavior of soybean oil methyl ester (SME) fuel. The spray-atomization behavior was analyzed through spray parameters such as the axial distance from the nozzle tip, local and overall Sauter mean diameter (SMD). These parameters were obtained from a spray visualization system and a droplet measuring system. In addition, the experimental results were compared with the numerical results calculated by the KIVA-3V code. It was revealed that the increase of the fuel temperature (from 300 K to 360 K) little affects the spray liquid tip penetration. The increase of the ambient gas temperature (from 300 K to 450 K) caused a increase in the spray liquid tip penetration. Also, biodiesel fuel evaporation actively occurred due to the increase in the fuel temperature and the ambient gas temperature. Of special significance was that the highest vapor fuel mass concentration was observed at the center region of the spray axis. In the results of the microscopic characteristics, the detected local droplet size at the axial direction and overall droplet size at the axial and radial direction in a control volume increased when the fuel temperature increased. This is believed to be due to an increase in the number of small droplets that quickly evaporated. In addition, the increased fuel temperature caused the decrease of the number of droplets and the increase of the vapor fuel mass. The mean axial velocity of droplets decreased with increasing fuel temperature.  相似文献   

2.
A planar and instantaneous visualization study of high-speed gas jets and their airblast sprays was performed to qualitatively examine the different atomization performances of different gas nozzles. For the visualization of high-speed gas jets (with no liquid injected), Nd:YAG pulsed laser sheets imaged the clustered vapor molecules in the Rayleigh range (d?λ), condensed from the natural humidity during the isentropic gas expansion through a nozzle. This method visualized both underexpanded sonic gas jets from a converging nozzle (SN-Type) and overexpanded supersonic gas jets from a converging-diverging nozzle (CD-Type). When liquid is cross-injected, the same laser sheet images the spray droplets of relatively large sizes (d?λ). The present visualization results show that the SN-Type nozzle develops a wider spray than the CD-Type nozzle, quite probably because the SN-Type nozzle has a wider gas jet (in the absence of liquid) than the CD-Type. Also, the wider spray of the SN-Type nozzle lowers the probability of droplet coalescence and generates finer sprays compared to the CD-Type nozzle. These visualization results qualitatively agree with the previous quantitative finding of the different atomization characteristics of the two types of nozzles (Park et al. 1996).  相似文献   

3.
This study is an investigation into the effects of temperature and pressure within a test chamber on the dynamic characteristics of injected supersonic diesel fuel jets. These jets were generated by the impact of a projectile driven by a horizontal single stage powder gun. A high speed video camera and a shadowgraph optical system were used to capture their dynamic characteristics. The test chamber had controlled air conditions of temperature and pressure up to 150 °C and 8.2 bar, respectively. It was found experimentally that, at the highest temperature, a maximum jet velocity of around 1,500 m/s was obtained. At this temperature, a narrow pointed jet appeared while at the highest pressure, a thick, blunt headed jet was obtained. Strong shock waves were generated in both cases at the jet head. For analytical prediction, equations of jet tip velocity and penetration from the work of Dent and of Hiroyasu were employed to describe the dynamic characteristics of the experiments at a standard condition of 1 bar, 30 °C. These analytical predictions show reasonable agreement to the experimental results, the experimental trend differing in slope because of the effect of the pressure, density fluctuation of the injection and the shock wave phenomena occurring during the jet generation process.  相似文献   

4.
A correlation image velocimetry (CIV) technique has been developed to study the evolution of the leading edge, or tip, of isothermal high-pressure fuel sprays. Adaptations of the analysis permit determination of both the average spray tip motion and the spatial distribution of velocity along the spray edge. From these measurements, three distinct regions of the tip’s evolution have been observed and scaling relations developed. Further investigation has revealed significant uniformity in the radial evolution of the spray tip, despite the apparent similarity to turbulent jet flow. Examination of pdfs of the average tip velocity reveals among the many repeatable injection events a significant amount of variability and that this variability extends to regions near the nozzle, implying that among the sources of shot-to-shot viability is the atomisation process itself.  相似文献   

5.
Further studies on high-speed liquid diesel fuel jets injected into ambient air conditions have been carried out. Projectile impact has been used as the driving mechanism. A vertical two-stage light gas gun was used as a launcher to provide the high-speed impact. This paper describes the experimental technique and visualization methods that provided a rapid series of jet images in the one shot. A high-speed video camera (106 fps) and shadowgraph optical system were used to obtain visualization. Very interesting and unique phenomena have been discovered and confirmed in this study. These are that multiple high frequency jet pulses are generated within the duration of a single shot impact. The associated multiple jet shock waves have been clearly captured. This characteristic consistently occurs with the smaller conical angle, straight cone nozzles but not with those with a very wide cone angle or curved nozzle profile. An instantaneous jet tip velocity of 2680 m/s (Mach number of 7.86) was the maximum obtained with the 40 nozzle. However, this jet tip velocity can only be sustained for a few microseconds as attenuation is very rapid.Received: 13 December 2003, Accepted: 11 April 2004, Published online: 11 February 2005[/PUBLISHED]K. Pianthong: Correspondence to:   相似文献   

6.
In the present study, a jet superposition modeling approach is explored to model group-hole nozzle sprays, in which multiple spray jets interact with each other. An equation to estimate the merged jet velocity from each of the individual jets was derived based on momentum conservation for equivalent gas jets. Diverging and converging group-hole nozzles were also considered. The model was implemented as a sub-grid-scale submodel in a Lagrangian Drop–Eulerian Gas CFD model for spray predictions. Spray tip penetration predicted using the present superposition model was validated against experimental results for parallel, diverging and converging group-hole nozzles as a function of the angle between the two holes at various injection and ambient pressures. The results show that spray tip penetration decreases as the group hole diverging or converging angle increases. However, the spray penetration of the converging group-hole nozzle arrangement is more sensitive to the angle between the two holes compared to diverging nozzle because the radial momentum component is converted to axial momentum during the jet–jet impingement process in the converging group-hole nozzle case. The modeling results also indicate that for converging group-hole nozzles the merged sprays become ellipsoidal in cross-section far downstream of the nozzle exit with larger converging angles, indicating increased air entrainment.  相似文献   

7.
This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ~100 m/s can be observed between the ‘fast’ and ‘slow’ sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the ‘fast’ side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization behavior resemble flow structures which are often observed in the presence of string cavitation produced under controlled conditions in scaled, transparent test nozzles. These observations suggest that widely used common-rail supply configurations and modern injectors can potentially generate asymmetric interior flows which strongly influence diesel spray morphology. The velocimetry measurements presented in this work represent an effective and relatively straightforward approach to identify deviant flow behavior in real diesel sprays, providing new spatially resolved information on fluid structure and flow characteristics within the shear layers on the jet periphery.  相似文献   

8.
9.
In this paper, a research aimed at quantifying mass and momentum transfer in the near-nozzle field of diesel sprays injected into stagnant ambient air is reported. The study combines X-ray measurements for two different nozzles and axial positions, which provide mass distributions in the spray, with a theoretical model based on momentum flux conservation, which was previously validated. This investigation has allowed the validation of Gaussian profiles for local fuel concentration and velocity near the nozzle exit, as well as the determination of Schmidt number at realistic diesel spray conditions. This information could be very useful for those who are interested in spray modeling, especially at high-pressure injection conditions.  相似文献   

10.
High-speed liquid jets have been applied to many fields of engineering, science and medicine. It is therefore of benefit to all these areas to investigate their characteristics by modern and inexpensive methods using a computational fluid dynamics (CFD) technique. Previously, high-speed liquid jets have been studied experimentally using a momentum exchange method, called the “impact driven method (IDM)”, by which the impact of a high-velocity projectile on the liquid package contained in the nozzle cavity produced the jet. The shock pulse reflections in the cavity caused by the impact then drove a multiple pulsed jet from the nozzle exit. In this study, a two-fluid simulation consisting of liquid and air can be successfully calculated by using a two-phase flow mixture model and a moving mesh for the projectile motion. The CFD results show good agreement to the results of previous experimental studies, both quantitatively and qualitatively. For the first time, the wave propagation within the liquid in the nozzle has been captured and analyzed, thereby demonstrating the dynamic characteristics of multiple pulsed high-speed liquid jets initiated by the IDM. This provides a breakthrough in the simulation of the supersonic injection of a liquid into air by using a well-known and user-friendly CFD software. It is useful fundamental knowledge for future studies of high-speed injection with applications in all its related fields.  相似文献   

11.
A special spray model is applied to study the spray behavior with high injection pressure and micro-hole nozzle. To reveal the cavitation in diesel nozzle and its influence on spray and atomization, the Large Eddy Simulation (LES) turbulence model is adopted to detect the cavitation, and then the special spray model coupling the cavitation is build. From research results, three important conclusions can be drawn. Firstly, the cavitation flow can raise the effective velocity at the nozzle exit and such effect become even more obvious with higher injection pressure, e.g.180 MPa. Secondly, the applied spray model is in good agreement with the spray characteristics and images obtained from the EFS8400 spray test platform. Thirdly, the cavitation with high injection pressure and micro-hole nozzle can increase the spray cone angle and reduce the spray penetration; the cavitation intensity has a great impact on the spray velocity field and vorticity intensity, especially at the initial spray field under the condition of high injection pressure.  相似文献   

12.
A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry. Transient needle lift and wobble were based upon ensemble averaged X-ray imaging preformed at Argonne National Lab. The minimum needle lift simulated was 5 µm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actuate the injection. Low needle lift is shown to result in vapor generation near the injector seat. Finally, the internal injector flow is shown to be highly complex, containing many transient and interacting vortices which result in perturbations in the spray angle and fluctuations in the mass flux. This complex internal flow also results in intermittent string flash-boiling when a strong vortex is injected and the resulting swirling spray contains a thermal non-equilibrium vapor core.  相似文献   

13.
This study analyses detailed temporally resolved full flow field data for pre- and post-impingement fuel sprays under atmospheric and elevated ambient conditions. A comprehensive suite of diagnostic techniques is utilised comprising of phase-resolved Phase Doppler Interferometry—employing a very fine grid and velocity signature to differentiate between pre- and post-impingement droplets—high-speed imaging (utilising Mie-scattering), high-magnification shadowgraphy and an adapted instantaneous mass-rate tube. Raised ambient conditions are achieved in a high-temperature, high-pressure constant volume rig affording large optical access. Temporal data for the free and impinging sprays is compared and analysed within three phases—early, mid and late injection—defined by the mass-rate tube data. All experimental techniques employed present consistent temporal and spatial trends at atmospheric and elevated ambient conditions, and global trends are consistent with the phenomenological flow structure originally proposed by Ozdemir and Whitelaw. Detailed analysis close to the piston surface reveals approximately a threefold increase in the D50 mean spray diameter for the post-impingement droplet size distribution at the wall spray tip. It is suggested that this is due to droplet coalescence, with some supporting evidence from high-speed imaging. Comparison of transient mass deposited on the surface with model predictions show reasonable agreement with the ‘Wet’ model assumption.  相似文献   

14.
15.
The Large Eddy Simulation model was introduced to study the micro spray characteristics under ultra-high injection pressure (>220 MPa). EFS8400 spray test platform was set up to verify the accuracy of the numerical model. The mechanisms of micro spray characteristics were studied intensively under different injection pressures (180 MPa, 240 MPa) and nozzle diameters (0.1 mm, 0.16 mm). The results indicated that the micro turbulence vortex structures can be captured, especially in the liquid spray core area. Large Eddy Simulation model combined with the small grid size of 0.25 mm show a huge advantage in studying the micro spray characteristics under ultra-high injection pressure; The turbulence vorticity and spray velocity for injection pressure of 240 MPa are more intensive than that of 180 MPa, and also the ultra-high injection pressure can contribute to strong turbulence disturbance between spray and surrounding air, which is helpful to improve the quality of spray; The spray velocity field extended wider for the diameter of 0.16 mm, and also the values of velocity in the spray center is higher than that of the diameter of 0.1 mm; The entrainment vortex appeared at the edge of the large velocity gradient between spray and surrounding air, and the higher velocity gradient for ultra-high injection pressure (240 MPa) between the spray and air is easier to increase the generation of entrainment vortex in the downstream of the spray, which can significantly increase the quality of spray and atomization.  相似文献   

16.
Air flow and pressure inside a pressure-swirl spray for direct injection (DI) gasoline engines and their effects on spray development have been analyzed at different injector operating conditions. A simulation tool was utilized and the static air pressure at the centerline of the spray was measured to investigate the static pressure and flow structure inside the swirl spray. To investigate the effect of static air pressure on swirl spray development, a liquid film model was applied and the Mie-scattered images were captured. The simulation and experiment showed that recirculation vortex and air pressure drop inside the swirl spray were observable and the air pressure drop was greater at high injection pressure. At high fuel temperature, the air pressure at the nozzle exit showed higher value compared to the atmospheric pressure and then continuously decreased up to few millimeters distance from the nozzle exit. The pressure drop at high fuel temperatures was more than that of atmospheric temperature. This reduced air pressure was recovered to the atmospheric pressure at further downstream. The results from the liquid film model and macroscopic spray images showed that the air pressure started to affect the liquid film trajectory about 3 mm from the nozzle exit and this effect was sustained until the air pressure recovered to the atmospheric pressure. However, the entrained air motion and droplet size have more significant influence on the spray development after the most of the liquid sheet is broken-up and the spray loses its initial momentum.  相似文献   

17.
We establish the existence and stability of multidimensional steady transonic flows with transonic shocks through an infinite nozzle of arbitrary cross-sections, including a slowly varying de Laval nozzle. The transonic flow is governed by the inviscid potential flow equation with supersonic upstream flow at the entrance, uniform subsonic downstream flow at the exit at infinity, and the slip boundary condition on the nozzle boundary. Our results indicate that, if the supersonic upstream flow at the entrance is sufficiently close to a uniform flow, there exists a solution that consists of a C 1,α subsonic flow in the unbounded downstream region, converging to a uniform velocity state at infinity, and a C 1,α multidimensional transonic shock separating the subsonic flow from the supersonic upstream flow; the uniform velocity state at the exit at infinity in the downstream direction is uniquely determined by the supersonic upstream flow; and the shock is orthogonal to the nozzle boundary at every point of their intersection. In order to construct such a transonic flow, we reformulate the multidimensional transonic nozzle problem into a free boundary problem for the subsonic phase, in which the equation is elliptic and the free boundary is a transonic shock. The free boundary conditions are determined by the Rankine–Hugoniot conditions along the shock. We further develop a nonlinear iteration approach and employ its advantages to deal with such a free boundary problem in the unbounded domain. We also prove that the transonic flow with a transonic shock is unique and stable with respect to the nozzle boundary and the smooth supersonic upstream flow at the entrance.  相似文献   

18.
Liquid film thickness inside two swirl injectors for direct injection (DI) gasoline engines was measured at different injection pressure conditions ranging from 2.0 to 7.0 MPa and then previous analytical and empirical equations were examined from the experimental results. Based on the evaluation, a new equation for the liquid film thickness inside the swirl injectors was introduced. A direct photography using two real scale transparent nozzles and a pulsed light source was employed to measure the liquid film thickness inside the swirl injectors. The error in the liquid film thickness measurement, generated from different refractive indices among transparent nozzle, fuel and air, was estimated and corrected based on the geometric optics. Two injectors which have different nozzle diameter and nozzle length were applied to introduce a more general empirical equation for the liquid film thickness inside the pressure swirl injectors. The results showed that the liquid film thickness remains constant at the injection pressures for direct injection gasoline engines while the ratio of nozzle length to nozzle diameter (L/D) shows significant effect on the liquid film thickness. The previously introduced analytical and empirical equations for relatively low injection pressure swirl injectors overestimated the effect of injection pressure at the operating range of high pressure swirl injectors and, in addition, the effect of L/D ratio and swirler geometry was rarely considered. A new empirical equation was suggested based on the experimental results by taking into account the effects of fuel properties, nozzle diameter, nozzle length and swirler geometry.  相似文献   

19.
The purpose of this study is to characterize the atomization of a jet of water sprayed into the air at high velocity through a commercial nozzle widely used for sprinkler irrigation. The typical diameter of the droplets present in the spray is in the range of several tens of micrometers to several millimeters. They are visualized by ombroscopy. A specific Droplet Tracking Velocimetry (DTV) technique is developed to estimate the size and velocity of these highly polydispersed droplets that are distinctly non spherical. This analysis is performed from the rupture of the liquid core region (about a distance of 550 nozzle diameters) to the dispersed zone (about a distance of 900 nozzle diameters). With this technique, we obtain joint size-velocity measurements that are rarely produced. Especially two velocity components and also a large diameter range are characterized at the same time; while with other techniques, such as Particle Doppler Anemometry (PDA), the diameter range is quite reduced and requires specific settings. Additional measurements of the liquid volume fraction are performed using a single mode fiber-optic probe. In the light of our experimental data, it appears that the turbulent droplet motion in the spray is strongly anisotropic. This anisotropy is quite unexpected because other studies on sprays (generally concerned with engine applications) show a relatively low anisotropy. We attribute this increase of anisotropy to the fact that, for this type of spray, the droplet relaxation time is long in comparison to the characteristic time of the turbulence and that biggest droplets are still submitted to atomization process. This strong anisotropy is responsible for the poor radial dispersion of the spray.  相似文献   

20.
The gasoline spray characteristics of a pressure-swirl injector were investigated with various exit plane tilts. The analysis focused on the correlation between tilt angle and flow angle. Mie-scattering technique and phase Doppler anemometry were employed to analyze the macroscopic spray development and droplet size distribution of the spray. An analytical method for mass flux estimation was applied to understand the velocity distribution at the nozzle exit. The results showed that the spray shape and velocity distribution of the spray were more asymmetrical at high tilt angles. In particular, an opened hollow cone spray was formed when the tilt angle is greater than the complementary flow angle. The pressure drop inside the spray, one of the crucial factors for the swirl spray collapse at various surrounding conditions, was attenuated in this opened hollow cone spray since the pressure inside the spray was assimilated to the surrounding air pressure. The spray collapse at high fuel temperature and back pressure conditions did not appear when the tilt angle is larger than the complementary flow angle due to the reduced pressure drop inside the spray. However, tilt angle should be optimized to fulfill the requirements of spray robustness and avoid the locally rich area. The droplet size of 70° tilted nozzle spray shows a value similar to that of the original swirl spray in the plane that includes nozzle axis and the major axis of exit surface ellipse (Major axis plane) while it shows an increased value in the plane that includes nozzle axis and the minor axis of exit surface ellipse (Minor axis plane).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号