首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of BOC2O in the presence and absence of DMAP was examined with some amines, alcohols, diols, amino alcohols, and aminothiols. Often, unusual products were observed depending on the ratio of reagents, reaction time, polarity of solvent, pKa of alcohols, or type of amine (primary or secondary). In reactions of aliphatic alcohols with BOC2O/DMAP, we isolated for the first time carbonic-carbonic anhydride intermediates; this helps explain the formation of symmetrical carbonates in addition to the O-BOC products. In the case of secondary amines, we succeeded to isolate unstable carbamic-carbonic anhydride intermediates that in the presence of DMAP led to the final N-BOC product. The effect of N-methylimidazole in place of DMAP was also examined.  相似文献   

2.
The acetylation of tert-butanol with acetic anhydride catalyzed by 4-(dimethylamino)pyridine (DMAP) has been studied at the Becke3 LYP/6-311 + G(d,p)//Becke3 LYP/6-31G(d) level of theory. Solvent effects have been estimated through single-point calculations with the PCM/UAHF solvation model. The energetically most favorable pathway proceeds through nucleophilic attack of DMAP at the anhydride carbonyl group and subsequent formation of the corresponding acetylpyridinium/acetate ion pair. Reaction of this ion pair with the alcohol substrate yields the final product, tert-butylacetate. The competing base-catalyzed reaction pathway can either proceed in a concerted or in a stepwise manner. In both cases the reaction barrier far exceeds that of the nucleophilic catalysis mechanism. The reaction mechanism has also been studied experimentally in dichloromethane through analysis of the reaction kinetics for the acetylation of cyclohexanol with acetic anhydride, in the presence of DMAP as catalyst and triethylamine as the auxiliary base. The reaction is found to be first-order with respect to acetic anhydride, cyclohexanol, and DMAP, and zero-order with respect to triethyl amine. Both the theoretical as well as the experimental studies strongly support the nucleophilic catalysis pathway.  相似文献   

3.
Model reactions for the 4-dimethylaminopyridine (DMAP)-catalyzed ring-opening polymerization of lactide and the corresponding lactic O-carboxylic anhydride (lacOCA) have been studied computationally at the B3LYP/6-31G(d) level of theory. The solvent effect of dichloromethane was taken into account through PCM/SCRF single-point calculations at the B3LYP/6-31G(d) level of theory. In marked contrast with that predicted for the reaction of alcohols with acetic anhydride, the mechanism in which nucleophilic activation of the monomer involving acylpyridinium intermediates was found to be energetically less favorable than the base activation of the alcohol through hydrogen bonding. The concerted pathway for the ring-opening of lactide and lacOCA was shown to compete with the traditional stepwise mechanism involving tetrahedral intermediates. Furthermore, DMAP is proposed to act as a bifunctional catalyst through its basic nitrogen center and an acidic ortho-hydrogen atom.  相似文献   

4.
The kinetics of the reaction of several alcohols (benzyl alcohol, ethanol, 1-phenylethanol, cyclohexanol, and 1-methyl-1-phenylethanol) with a selection of anhydrides (acetic anyhydride, propionic anhydride, isobutyric anhydride, isovaleric anhydride, and pivalic anhydride) as catalyzed by 4-(N,N-dimethylamino)pyridine (DMAP)/triethyl amine have been studied in CH(2)Cl(2) at 20 degrees C. In all cases the reaction kinetics can be described by rate laws containing a DMAP-catalyzed term and an uncatalyzed (background) term. The rate constants for the background reaction respond sensitively to changes in the steric demand of the alcohol and the anhydride substrates, making the reaction of cyclohexanol with acetic anhydride 526 times faster than the reaction with pivalic anhydride. Steric effects are even larger for the catalyzed reaction and the reactivity difference between acetic and pivalic anhydride exceeds a factor of 8000 for the reaction of cyclohexanol. There is, however, no linear correlation between the steric effects on the catalyzed and the uncatalyzed part. As a consequence there are substrate combinations with dominating catalytic terms (such as the reaction of benzyl alcohol with isobutyric anhydride), while other substrate combinations (such as the reaction of cyclohexanol with pivalic anhydride) are characterized through a dominating background process. The implications of these findings for the kinetic resolution of alcohols are discussed.  相似文献   

5.
Pyridine‐3‐carboxylic anhydride (3‐PCA) was found to function as an efficient coupling reagent for the preparation of carboxylic esters from various carboxylic acids with alcohols under mild conditions by a simple experimental procedure. This novel condensation reagent 3‐PCA was applicable not only for the synthesis of achiral carboxylic esters catalyzed by 4‐(dimethylamino)pyridine (DMAP) but also for the production of chiral carboxylic esters by the combination of chiral nucleophilic catalyst, such as tetramisole (=2,3,5,6‐tetrahydro‐6‐phenylimidazo[2,1‐b][1,3]thiazole) derivatives. An efficient kinetic resolution of racemic benzylic alcohols with achiral carboxylic acids was achieved by using 3‐PCA in the presence of (R)‐benzotetramisole ((R)‐BTM), and a variety of optically active carboxylic esters were produced with high enantiomeric excesses by this new chiral induction system without using a tertiary amine.  相似文献   

6.
The photophysics of 4-(dimethylamino)pyridine (DMAP) has been investigated in different solvents in the presence of aliphatic and fluorinated aliphatic alcohols, respectively. For most systems, consecutive two-step hydrogen-bonded complex formation is observed in the presence of alcohols. Equilibrium constants are determined from UV spectroscopic results for the formation of singly and doubly complexed species. The resolved absorption and fluorescence spectra for the singly and doubly complexed DMAP are derived by means of the equilibrium constants. Exceptionally large hydrogen bond basicity values are found for the ground and singlet excited DMAP molecules. In n-hexane, as a consequence of complex formation, the intramolecular charge transfer (ICT) emission becomes dominant over of the locally excited fluorescence; the fluorescence and triplet yields increase considerably with complexation. In polar solvents, both the fluorescence and triplet yields of the complex are much smaller than that of the uncomplexed DMAP. The dipole moments derived for the singly complexed species from the Lippert-Mataga analysis are much larger than those of the uncomplexed molecules. However, for the relaxed ICT excited-state one obtains different dipole moments in apolar and polar solvents. This may be explained by a conformational change of the molecule in the ICT excited state from planar geometry in apolar solvent to the perpendicular structure (characterized with bigger dipole moment) in polar solvent.  相似文献   

7.
苯乙烯-马来酸酐无规共聚合进展   总被引:3,自引:0,他引:3  
本文系统介绍并评述了苯乙烯-马来酸酐无规共聚合研究的发展概况。讨论了共聚合动力学、聚合技术等对共聚物结构与性能的影响。认为该系列是一类具有广泛应用前景的耐热材料和共混助剂。  相似文献   

8.
A detailed computational and kinetic analysis of the acetylation of 1‐phenylethanol with acetic anhydride catalyzed by planar chiral 4‐(dimethylamino)pyridine (DMAP) catalyst (?)‐ 1 is presented. The study includes a computational investigation of the potential‐energy surface including the acylation and stereoselective transition states at the DFT level of theory. Experimentally, the kinetic study shows that the reaction proceeds in a first‐order manner in catalyst, whereas both substrates, acetic anhydride and 1‐phenylethanol, show fractional order, which is in accordance with steady‐state conditions. The fractional order depends on an equilibrium between the free catalyst and the acetylated catalyst.  相似文献   

9.
《Tetrahedron: Asymmetry》2006,17(6):1007-1016
4-Chloro-2-(1-hydroxybenzyl)pyridine and 4-chloro-2-(1-hydroxyalkyl)pyridines were obtained with moderate to excellent enantiomeric excesses and high isolated yields by bioreduction with Baker’s yeast of the corresponding ketones. The resulting optically active alcohols were transformed into adequate DMAP derivatives, which have been applied in asymmetric catalytic processes as nucleophilic catalysts in the stereoselective chemical alkoxycarbonylation of 1-phenylethanol or as chiral ligands in the enantioselective addition of diethylzinc to benzaldehyde.  相似文献   

10.
A DMAP‐N‐oxide, featuring an α‐amino acid as the chiral source, was developed, synthesized and applied in asymmetric Steglich rearrangement. A series of O‐acylated azlactones afforded C‐acylated azlactones possessing a quaternary stereocenter in high yields (up to 97 % yield) and excellent enantioselectivities (up to 97 % ee). Compared to the widespread use of pyridine nitrogen, which serves as the nucleophilic site in the asymmetric acyl transfer reaction, we discovered that chiral DMAP‐N‐oxides, in which the oxygen now acts as the nucleophilic site, are efficient acyl transfer catalysts. Our finding might open a new door for the development of chiral DMAP‐N‐oxides for asymmetric acyl transfer reactions.  相似文献   

11.
A DMAP‐N‐oxide, featuring an α‐amino acid as the chiral source, was developed, synthesized and applied in asymmetric Steglich rearrangement. A series of O‐acylated azlactones afforded C‐acylated azlactones possessing a quaternary stereocenter in high yields (up to 97 % yield) and excellent enantioselectivities (up to 97 % ee). Compared to the widespread use of pyridine nitrogen, which serves as the nucleophilic site in the asymmetric acyl transfer reaction, we discovered that chiral DMAP‐N‐oxides, in which the oxygen now acts as the nucleophilic site, are efficient acyl transfer catalysts. Our finding might open a new door for the development of chiral DMAP‐N‐oxides for asymmetric acyl transfer reactions.  相似文献   

12.
4-(N,N-Dimethylamino)pyridine (DMAP), with a dual role as a basic nucleophilic catalyst, was shown to be a highly efficient catalyst for the synthesis of some new N-(2-aryl-7-benzyl-5,6-diphenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)benzenesulfonamides through the reaction of 2-aryl-7-benzyl-5,6-diphenyl-7H-pyrrolo[2,3-d]pyrimidin-4-amines (7-deazaadenines) with benzenesulfonyl chlorides. It was also found that the use of DMAP under solvent-free conditions is much more effective than other catalytic systems such as pyridine as both the catalyst and solvent, t-BuOK in t-BuOH, Et3N in ethanol (EtOH), and even DMAP in dimethylformamide (DMF). The influences of the reaction parameters, temperature, and the catalyst amount, on the catalytic performance have been studied. All synthetic compounds were characterized on the basis of their full spectral data.  相似文献   

13.
Sequence regulation of monomers is undoubtedly a challenging issue as an ultimate goal in polymer science. To efficiently produce sequence-controlled copolymers, we herein developed the versatile tandem catalysis, which concurrently and/or sequentially involved ruthenium-catalyzed living radical polymerization and in situ transesterification of methacrylates (monomers: RMA) with metal alkoxides (catalysts) and alcohols (ROH). Typically, gradient copolymers were directly obtained from the synchronization of the two reactions: the instantaneous monomer composition in feed gradually changed via the transesterification of R(1)MA into R(2)MA in the presence of R(2)OH during living polymerization to give R(1)MA/R(2)MA gradient copolymers. The gradient sequence of monomers along a chain was catalytically controlled by the reaction conditions such as temperature, concentration and/or species of catalysts, alcohols, and monomers. The sequence regulation of multimonomer units was also successfully achieved in one-pot by monomer-selective transesterification in concurrent tandem catalysis and iterative tandem catalysis, providing random-gradient copolymers and gradient-block counterparts, respectively. In contrast, sequential tandem catalysis via the variable initiation of either polymerization or in situ transesterification led to random or block copolymers. Due to the versatile adaptability of common and commercially available reagents (monomers, alcohols, catalysts), this tandem catalysis is one of the most efficient, convenient, and powerful tools to design tailor-made sequence-regulated copolymers.  相似文献   

14.
We investigated the use of dicyclohexylcarbodiimide (DCC) as an activating agent in the synthesis of aliphatic polyesters. Butylhexanoate was synthesized in order to optimize the reaction conditions. The reactions were carried out in methylene chloride at room temperature. It was shown that nearly complete conversion is achieved if 4-(dimethylamino)pyridinium 4-toluenesulfonate (DPTS) is used as the catalyst. DPTS is a complex formed from 4-(dimethylamino)pyridine (DMAP) and p-toluenesulfonic acid (PTSA). The polyesters based on 1,10-octanedicarboxylic acid and 1,4-butanediol, synthesized in this way, had degrees of polymerization up to 67.  相似文献   

15.
(R)-(+)-N-Methylbenzoguanidine ((R)-NMBG) was found to function as an efficient acyl-transfer catalyst for the kinetic resolution of racemic secondary benzylic alcohols in the presence of achiral carboxylic acids and pivalic anhydride. The use of a tertiary amine in this reaction is not necessary to attain good chemical yields of the products. It was determined that diphenylacetic acid could be employed as the most suitable acyl donor for achieving a high enantioselectivity for the kinetic resolution of the racemic secondary benzylic alcohols having normal aliphatic alkyl chains at the C-1 positions. On the other hand, a less-hindered carboxylic acid, such as 3-phenylpropanoic acid, functioned as a better acyl donor for the kinetic resolution of racemic secondary benzylic alcohols having branched aliphatic alkyl chains at the C-1 positions.  相似文献   

16.
Photosensitive copolymers have been obtained by chemical modification of natural rubber. The introduction of the photoreactive cinnamoyl group in different conversions has been carried out by the reaction of natural polyisoprene with maleic anhydride, followed by ring opening and condensation with some oxyalkylcinnamate esters. These reactions gave rise to five polymer series. Each series, for which the anhydride content was kept constant, is constituted of five copolymeric products, differing from each other in the size of the aliphatic chain between the chromophore and the main chain. The photosensitive products were submitted to UV irradiation, and their kinetic behavior has been investigated in order to correlate structural dissimilarities with the dimerization rate constants.  相似文献   

17.
Singh S  Das G  Singh OV  Han H 《Organic letters》2007,9(3):401-404
[reaction: see text] The syntheses of bicyclic diaminopyridines 3 and 4 and tricyclic triaminopyridines 5 and 6, two novel series of nucleophilic catalysts, are described. Arguments are made for predicting the superiority of these catalysts over DMAP and even 2, the best esterification catalyst reported to date. The efficiencies of DMAP, PPY, and 2-6 in catalyzing the esterification of tertiary alcohols were compared. As predicted, 5 and 6 were about 6-fold more effective than DMAP and slightly better than 2.  相似文献   

18.
[reaction: see text] The kinetic of the reactions of phthalic and maleic anhydrides with different substituted phenols (Z-PhOH with Z = H, m-CH(3), p-CH(3), m-Cl, p-Cl, and m-CN) were studied in aqueous solution. Two kinetic processes well separated in time were observed. The fast one is attributed to the formation of the aryl ester in equilibrium with the anhydride and allows the determination of the rate of nucleophilic attack of the phenol on the anhydride (k(-)(A)). From the slow kinetic process, the equilibrium constant for this reaction was determined. The Bronsted-type plots for the nucleophilic attack of substituted phenols on the anhydrides were linear with slopes beta(Nuc) of 0.45 and 0.56 for phthalic and maleic anhydride, respectively. The results are consistent with a mechanism involving rate-determining nucleophilic attack and also with a concerted mechanism. The calculated effective charge on the atoms involved in the reactions and the Bronsted beta values are consistent with a mechanism involving a concerted or enforced concerted mechanism where a tetrahedral intermediate with significant lifetime is not formed along the reaction coordinate. The latter mechanism is preferred over the stepwise process.  相似文献   

19.
Octalactin A, an antitumor agent containing an eight-membered lactone moiety, has been stereoselectively prepared by means of enantioselective aldol reactions of selected silyl enolates with achiral aldehydes, promoted by a chiral Sn(II) complex. The medium-sized lactone part was effectively constructed by way of a new and rapid mixed-anhydride lactonization using 2-methyl-6-nitrobenzoic anhydride (MNBA) with a catalytic amount of 4-(dimethylamino)pyridine (DMAP) or 4-(dimethylamino)pyridine 1-oxide (DMAPO). The use of only 5 mol % of DMAP or 2 mol % of DMAPO rapidly promoted formation of the medium-sized ring of the octalactin, demonstrating the remarkable efficiency of the new lactonization protocol.  相似文献   

20.
Alternating copolymers that contain maleic anhydride (MAn) as a component occur in two different stereochemical configurations which are differentiated by their reactivity. Model compounds, 2, 3-dialkylsuccinic acids and their anhydrides, were investigated and it was demonstrated that there is a distinct difference between threo and erythro configurations in their chemical and physical behavior. Both configurations also occur in the alternating copolymers. Beside the model compounds, the alternating copolymers ethylene-MAn, propylene-MAn, and styrene-MAn were investigated in their reactions with amines, alcohols, and water (hydrolysis). The cis configurations showed the higher reaction rates. Reactions of the anhydride moieties with equimolar amounts of aniline, ethanol, and water demonstrated that reactions follow second-order rate laws. With excess reactant, the reaction follows a pseudo-first-order rate law. The rate constants depend on the degree of polymerization and on the comonomer. Increasing steric hindrance and molecular weight lead to a decrease of the reaction rate. Catalysis of the hydrolysis reaction by tertiary amines results in similar rate constants for the configurations of the substituted succinic acid anhydrides. The reasons are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号