首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
An ion-channel sensor was demonstrated by immobilizing ETH 1001, an ionophore for ion-selective electrodes, on a gold electrode surface. The approach for preparing the sensor was to incorporate the ionophore into a mixed self-assembled monolayer of 10-mercaptodecanesulfonate and 11-hydroxy-1-undecanethiol formed on the surface. The voltammetric responses for the thus prepared sensor to the primary cation Ca(2+) were observed by using [Fe(CN)(6)](3-/4-) as an electroactive marker. The ionophore was stably immobilized on the electrode surface with the hydrophobic interaction between its alkyl chains and those of the alkanethiol. The introduction of a proper charge density to the electrode surface improved the sensor sensitivity with retaining the selective response to Ca(2+) against Mg(2+) with concentrations above 10(-4) M.  相似文献   

2.
Bai L  Yuan R  Chai Y  Yuan Y  Mao L  Zhuo Y 《The Analyst》2011,136(9):1840-1845
In this work, a label-free electrochemical aptamer-based sensor (aptasensor) was constructed on account of the direct immobilization of redox probes on an electrode surface. For this proposed aptasensor, a gold nanoparticles (AuNPs)-coated electrode was firstly modified with redox probes-nickel hexacyanoferrates nanoparticles (NiHCFNPs) through chemisorption and electrostatic adsorption. Then, platinum-gold alloy nanoparticles (Pt-AuNPs) and horseradish peroxidase (HRP) were respectively assembled onto the modified electrode surface, which formed the multilayer films for amplifying the electrochemical signal of NiHCFNPs and immobilizing thiolated thrombin aptamers (TBAs). In the presence of target thrombin, the TBA on the multilayer could catch the thrombin onto the electrode surface, which resulted in a barrier for electro-transfer, leading to the decrease of the electrochemical signal of NiHCFNPs amplified by the Pt-AuNPs and HRP toward H(2)O(2). The proposed method avoided the redox probes labeling process, increased the amount of redox probes, and further amplified the electrochemical signal. Thus, the approach showed a high sensitivity and a wider linearity to thrombin in the range between 0.01 nM and 50 nM with a detection limit of 6.3 pM.  相似文献   

3.
An amperometric enzyme electrode incorporating horseradish peroxidase is described for the determination of hydrogen peroxide in organic solvents. The enzyme was co-adsorbed with an electron mediator, potassium hexacyanoferrate(II), on the surface of a graphite foil electrode, making reagentless measurement possible. The electrochemical reduction of the enzymatically oxidized mediator was utilized as the analytical signal. Studies in different solvent systems revealed that the electrode could be operated in dioxane, chloroform and chlorobenzene, the last two providing approximately double the sensitivity of the former. The presence of a small amount of aqueous buffer was essential for sensor activity. During 2 weeks of intermittent use, the sensitivity of the electrode decreased to 40% of its initial value. At least 50 assays could be performed with a single sensor.  相似文献   

4.
This work reports on the development of a new voltammetric sensor for diphenylamine based on the use of a miniaturized gold electrode modified with a molecularly imprinted polymer recognition element. Molecularly imprinted particles were synthesized ex situ and further entrapped into a poly(3,4-ethylenedioxythiophene) polymer membrane, which was electropolymerized on the surface of the gold electrode. The thickness of the polymer layer was optimized in order to get an adequate diffusion of the target analyte and in turn to achieve an adequate charge transfer at the electrode surface. The resulting modified electrodes showed a selective response to diphenylamine and a high sensitivity compared with the bare gold electrode and the electrode modified with poly(3,4-ethylenedioxythiophene) and non-imprinted polymer particles. The sensor showed a linear range from 4.95 to 115 μM diphenylamine, a limit of detection of 3.9 μM and a good selectivity in the presence of other structurally related molecules. This sensor was successfully applied to the quantification of diphenylamine in spiked apple juice samples.  相似文献   

5.
Because of their high sensitivity, piezoelectric sensor techniques are extremely useful for environmental or clinical analysis. We developed a piezoelectric crystal DNA biosensor for the detection of the hybridization reaction based on the self-assembled monolayer technology and biotin–avidin system. 3,3′-Dithiopropionic acid was applied to form a self-assembled monolayer (SAM) on the gold surface of the quartz crystal. Avidin was coated on the gold electrode conjugated with 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC) and N-hydroxysuccinimide (NHS), and then biotinylated nucleotide acids were immobilized on the gold electrode surface through the specific interaction of biotin and avidin. Our results indicated that, using this immobilization method, the piezoelectric DNA sensor shows a higher sensitivity and specificity in detecting the hybridization reaction. The sensor can be used repeatedly by electrode regeneration.  相似文献   

6.
A planar ultramicroelectrode nitric oxide (NO) sensor was fabricated to measure the local NO surface concentrations from NO-releasing microarrays of varying geometries. The sensor consisted of platinized Pt (25 microm) working electrode and a silver paint reference electrode coated with a thin silicone rubber gas permeable membrane. An internal hydrogel layer separated the Pt working electrode and gas permeable membrane. The total diameter of the sensor was 相似文献   

7.
Huang H  Dasgupta PK 《Talanta》1997,44(4):605-615
Electrochemical sensors for hydroperoxides based on thin flowing films were investigated. The sensor is composed of two segments of Nafion tubing put on a silver wire. A small portion of the silver wire is exposed and is chloridized to function as the reference electrode. One Nafion segment has a Pt-wire coil wrapped on it to function as the counter electrode and the other has a similar Pt-Rh wire coil that functions as the working electrode. A collection solution flows as a thin film on the sensor surface and also functions as the collection medium. Hydrogen peroxide and cumene hydroperoxide were examined as test compounds. The former can be oxidatively determined with a Pt-Rh electrode over a large range (ppb-ppm) without any significant influence of relative humidity. By using a technique to stop the liquid flow, the sensitivity can be further improved. Cumene hydroperoxide, an industrially important hydroperoxide, can be determined easily with a relative precision of better than 5% in the vapor phase over simulated process reaction mixtures containing percentage levels of the analyte by reduction on a Pd electrode. The sensor is simple and inexpensive to fabricate and requires only a suitably equipped personal computer for operation.  相似文献   

8.
在弱酸性条件下,以邻氨基酚为单体交联剂,白藜芦醇为模板分子,采用循环伏安法在玻碳电极上电聚合成白藜芦醇分子印迹聚邻氨基酚敏感膜分子印迹传感器,并对该传感器的结构、选择性、灵敏度、稳定性、线性范围等性能进行了研究.结果表明,该传感器对白藜芦醇具有良好的选择性和敏感度,白藜芦醇浓度分别在2.0×10-8~7.0×10-7m...  相似文献   

9.
A novel amperometric biosensor for the measurement of l-lactate has been developed. The device comprises a screen-printed carbon electrode containing cobalt phthalocyanine (CoPC-SPCE), coated with lactate oxidase (LOD) that is immobilized in mesoporous silica (FSM8.0) using a polymer matrix of denatured polyvinyl alcohol; a Nafion layer on the electrode surface acts as a barrier to interferents. The sampling unit attached to the SPCE requires only a small sample volume of 100 μL for each measurement. The measurement of l-lactate is based on the signal produced by hydrogen peroxide, the product of the enzymatic reaction. The behavior of the biosensor, LOD-FSM8.0/Naf/CoPC-SPCE, was examined in terms of pH, applied potential, sensitivity and operational range, selectivity, and storage stability. The sensor showed an optimum response at a pH of 7.4 and an applied potential of +450 mV. The determination range and the response time for l-lactate were 18.3 μM to 1.5 mM and approximately 90 s, respectively. In addition, the sensor exhibited high selectivity for l-lactate and was quite stable in storage, showing no noticeable change in its initial response after being stored for over 9 months. These results indicate that our method provides a simple, cost-effective, high-performance biosensor for l-lactate.  相似文献   

10.
Cocaine, a powerful addictive stimulant drug, has a variety of adverse effects on the body, thus its sensitive detection is very important. Here, we report on a simple, label-free, and sensitive impedimetric sensor for determination of cocaine based on its affinity to form an inclusion complex with β-cyclodextrin (β-CD). First, we prepared nanostructured poly N-acetylaniline film via electropolymerization of its monomer on a glassy carbon electrode (PNAANI/GC), subsequently overoxidized it, and conjugated β-CD to the polymer backbone. The designed and synthesized nanostructured PNAANI film serves a dual function in the sensor: on one hand, it maintains a high effective surface area on a geometrically small electrode that significantly enhances the number of β-CD molecules immobilized on the electrode; on the other hand, it provides an upright-oriented β-CD conjugation to the polymer backbone, thus all the β-CD receptors are actively involved in responding to the target. Sensitivity of the sensor was further enhanced by preconcentration of cocaine on the modified electrode surface. We attributed the changes in the interfacial charge transfer resistance (R ct) of the electrode to cocaine concentration. Under optimized condition (pH 7.4, 5-min accumulation at an open circuit voltage), the sensor responded to cocaine concentration in the range of 100 nM–1.0 mM with a detection limit of 50 nM. Selectivity of the sensor for cocaine relative to some potential inferring compounds was also investigated, and the results were promising. The proposed approach exhibited an extended dynamic range, low detection limit, good sensitivity, and a desirable selectivity, which provides an efficient application prospect for on-field cocaine sensing.  相似文献   

11.
Substrate plays an essential role in the construction of flexible electrode and related wearable sensors. Compared with conventional flexible substrates such as Polyethylene terephthalate (PET), the common transparent adhesive tape exhibits the unique advantages in the non-adhesive surface with good printability, allowing the conductive layer to be deposited directly on its surface, and in another adhesive surface with good fastening, thus facilitating the fabrication of as-prepared electrode in subsequent wearable sensors. Herein, we constructed a new type of flexible sensor to detect ascorbic acid which is closely related to human health in sweat by integrating flexible electrode based on transparent adhesive tape with potentiostat that incorporate the critical signal conditioning, processing, and transmission functions. Experiment results show that resulting electrode still has the good electrochemistry performance even after 1000 bending cycles (20 % bending degrees). By connecting as-prepared flexible electrode to the potentiostat to carry out real time analysis, the resulting sensor exhibits excellent sensitivity, detection limit and repeatability (0.15 V detection potential vs printed Ag/AgCl reference electrode, 3.8 μM detection limit, 25 μM-1 mM linearity, and good selectivity).  相似文献   

12.
A novel fabrication of an amperometric glucose sensor by layer after layer approach is described. The sensor electrode is fabricated by arranging a layer of Pt black, a layer of glucose oxidase (GOD) and a layer of stabilizer gelatin on a shapable electro-conductive (SEC) film surface. Finally, the dried layered-assembly is cross-linked by exposing to a diluted glutaraldehyde solution. The performance of the developed sensor is evaluated by a FIA system at 37°C and under a continuous polarization at 0.4 V (vs. Ag/AgCl). The sensitivity of the sensor was dependent on the amount of GOD loaded. The highest sensitivity (3.6 μA/mM cm−2) of the sensor was obtained at a GOD loading of 160 μg/cm2, and the linear dynamic range was extended to 80 mM level when the sensor was covered with a polycarbonate membrane. The sensor shows an extremely stable response for several weeks and a storage stability of over 2 years.  相似文献   

13.
This paper describes the sensing properties of a potentiometric sensor based on a palladium oxide (PdO) electrode. Our investigation of the sensing mechanism is also discussed. We studied carbon monoxide (CO) sensing performance of a PdO electrode doped with Mg, Ni, and La, printed on zirconia. The results indicated that defects on the surface of PdO, which allow adsorption of CO, can effectively enhance the sensitivity of the sensors. To explore the source of the signal, a PdO-based electrode was printed on an alumina disc and a zeolite pellet for CO detection at 450℃. Notably the zeolite coupled with the PdO-based electrode to generate potentiometric responses to changes in CO concentration. According to the resistance and impedance measurements, the response to CO was ascribed to the changing interfacial potential between the PdO electrode and electrolyte. A model based on an electrochemical double layer between the PdO and electrolyte was determined to explain the behavior of the potentiometric sensor. It may be possible to harness these effects at PdO electrodes for the development of electrochemical sensors.  相似文献   

14.
《Analytical letters》2012,45(11):1939-1953
Abstract

This paper presents a general method of enzyme immobilization at the surface of ion selective membranes. Covalent binding of enzymes directly on the electrode surface is a very effective method that results in stable enzymatic membranes. As an example the construction of enzymatic sensors for urea determination based on ammonium and hydrogen carbonate ion selective electrodes is presented. The optimum working conditions for these biosensors were found. Bioelectrodes based on an ammonium sensor show very good analytical parameters: dynamic stability - over 2 months without decrease of sensitivity, response time - shorter then 20 s. high sensitivity, determination range from 0.3 to 70 mM. In the contrast to the ammonium ion based biosensors, those constructed on the basis of anion selective electrodes have worse analytical parameters. It is mainly due to poor selectivity and instability of an applied ion selective electrode. In spite of this, both types of urea biosensors were used for measurements in the differential potentiometry mode. The application of such system increased the sensitivity of urea determination.  相似文献   

15.
It has been reported that the introduction of a dielectric barrier between adjacent digits of an interdigitated electrode array can improve the sensitivity of the array as an electrochemical impedance biosensor. Here we present an in‐depth analysis of the impedance in planar interdigitated electrodes and 3‐D interdigitated electrodes (with dielectric barriers). The analysis indicates that the planar geometry not only provides lower impedance but also a higher change impedance as a result of molecular immobilization on the electrode array surface.  相似文献   

16.
Guillermina L. Luque 《Talanta》2007,71(3):1282-1287
This work reports on the analytical performance of composites obtained by dispersing copper microparticles and multi-wall carbon nanotubes within a mineral oil binder (CNTPE-Cu) for the determination of amino acids and albumin. The strong complexing activity of amino acids towards copper makes possible an important improvement in the sensitivity for the determination of amino acids and albumin. This new electrode permits the highly sensitive amperometric detection of amino acids, even the non-electroactive ones, at very low potentials (0.000 V) and physiological pH (phosphate buffer solution pH 7.40). The response of the electrode is highly dependent on the amount of copper, demonstrating the crucial role of the metal in the analytical performance of the sensor. The best analytical performance is obtained for the electrode containing 6.0% (w/w) copper. The resulting sensor shows a fast response (7 s) and a sensitivity that depends on the nature of the amino acid. The electrode surface demonstrates an excellent resistance to surface fouling, with R.S.D. of 4% for the sensitivities of 10 successive calibration plots. Albumin is determined with CNTPE-Cu using a protocol based on the accumulation of the protein for 10 min at −0.100 V, followed by the square-wave voltammetric analysis. The quantification of albumin concentration in lyophilized control serum gives excellent agreement with the classical spectrophotometric methodology and with the value informed for the supplier.  相似文献   

17.
In this paper the influence of the electrochemical reaction at the auxiliary electrode of oxygen microsensors on the sensor performance was investigated. When the auxiliary electrode is closely spaced to the working electrode, the redox cycling of O2/H2O takes place in an electrochemical oxygen sensor. This cycling alters the oxygen distribution around the working electrode and therefore affects the measured cathodic current passing through the working electrode. Calibrations have to be taken out to determine the real O2/H2O cycling effects. Furthermore, this redox cycling also provides the possibility to enhance the sensitivity of the electrochemical oxygen microsensor. Experimental results indicate that the sensitivity of the oxygen sensor is enhanced 3.0 times with the on‐chip 10 μm spaced interdigitated auxiliary electrode.  相似文献   

18.
《Electroanalysis》2018,30(8):1734-1739
The present study describes a novel electrochemical aptasensor for detection of carcinoembryonic antigen (CEA), a key cancer biomarker. The sensing strategy relied on the CEA‐induced bridge assembly, as a physical barrier, on the surface of gold electrode, resulting in a significant increase of the sensor sensitivity. Under optimal conditions, the aptasensing platform showed a wide linear range (3 pg/mL to 40 ng/mL) and a low detection limit (0.9 pg/mL). Some possible interfering materials were also assessed and the results indicated that the designed aptasensor had good specificity toward CEA. The quantitation of CEA in the spiked human serum samples confirmed the reliability and applicability of the electrochemical aptasensor. So, the developed sensing method has a potential application in the clinical diagnosis.  相似文献   

19.
In this paper, a novel and convenient electrochemical sensor for detection of methimazole (MMI) by differential pulse voltammetry is presented. This sensor was fabricated by dripping well-dispersed MWCNTs onto glassy carbon electrode (GCE) surface, and then poly-l-Arg (P-L-Arg) film was deposited on the electrode. Finally, Cu nanoparticles (CuNPs) were electrochemically deposited on the resulting film by using cyclic voltammetry to prepare CuNPs-P-L-Arg/MWCNTs/GCE. The surface morphology of the electrodes has been studied by scanning electron microscopy. Studies reveal that the irreversible oxidation of MMI was highly facile on CuNPs-P-L-Arg/MWCNTs/GCE. The dynamic detection range of this sensor to MMI was 5.2–50 µM, with the detection limit of 2 µM. A new voltammetric method for determination of MMI was erected and shows good sensitivity and selectivity, very easy surface update and good stability. The analytical application of the modified electrode is demonstrated by determining MMI in biological fluids (serum).  相似文献   

20.
In this work, a label-free electrochemical sensor based on target-induced displacement is reported with adenosine as the model analyte. The sensing substrate is prepared using a gold electrode modified with a self-assembled monolayer of 1,6-hexanedithiol that mediates the assembly of a gold nanoparticle film, which can increase the surface loading of capture probe and enhance the signal. An aptamer for adenosine is applied to hybridizing with the capture probe, yielding a double-stranded complex of the aptamer and the capture probe on the surface. The interaction of adenosine with the aptamer displaces the aptamer sequence and causes it to dissociate from the interface. This results in a decrease in the amount of aptamer/capture probe duplex form, and, accordingly, the desorption of methylene blue, an electroactive indicator bound to the duplex, from the electrode. Then, the redox current of the indicator can reflect the concentration of the analyte. The fabricated sensor is shown to exhibit high sensitivity, desirable selectivity and a three-decade wide linear range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号