首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Some explosives are stable molecules with large energy barriers to chemical reaction, and in shock or impact initiation, a sizable amount of phonon energy must be converted to the molecular internal higher vibrations by multiphonon up pumping. To investigate the relationship between impact sensitivities and energy transfer rates, the number of doorway modes of explosive molecules is estimated by a simple theory in which the rate is proportional to the number of normal mode vibrations. We evaluated frequencies of normal mode vibrations of 13 explosive molecules which are CHNO nitramine-contained and have not been analyzed previously. The number of doorway modes in the regions of 200–700 cm−1 was evaluated by the direct counting method. For more clear investigation of the relationship we have classified these 13 nitramine explosive molecules, by the number of nitramine group they contained, into two groups. There are eight molecules that contained one nitramine group and five molecules that contained poly-nitramine groups. It is found that the number of doorway modes shows a linearly correlation to the impact sensitivities derived from drop hammer tests. This result is in agreement with that of several previous works. Besides, it is also noted in our study that in those nitramine explosives molecules with similar molecular structure (similar number nitramine group they contained) and similar molecular weight, the correlation between the sensitivity and the number of doorway modes is higher. We found that the vibrational frequency of ω corresponds to nitro group motions of every molecule is contributed to the number of doorway modes in the regions of 200–700 cm−1.  相似文献   

2.
The vibrational energy relaxation from the first excited ND-stretching mode of NH(2)D dissolved in liquid NH(3) is studied using molecular dynamics simulations. The rate constants for inter- and intramolecular energy transfer are calculated in the framework of the quantum-classical Landau-Teller theory. At 273 K and an ammonia density of 0.642 g cm(-3) the calculated ND-stretch lifetime of τ = 9.1 ps is in good agreement with the experimental value of 8.6 ps. The main relaxation channel accounting for 52% of the energy transfer involves an intramolecular transition to the first excited state of the umbrella mode. The energy difference between both states is taken up by the near-resonant bending vibrations of the solvent. Less important for the ND-stretch lifetime are both the direct transition to the ground state and intramolecular relaxation via the NH(2)D bending modes contributing 23% each. Our calculations imply that the experimentally observed weak density dependence of τ is caused by detuning the resonance between the ND-stretch-umbrella energy gap and the solvent accepting modes which counteracts the expected linear increase of the relaxation rate with density.  相似文献   

3.
The dynamics of atoms or molecules adsorbed on a metal surface, and excited by collisions with an atomic beam, are treated within a theory that includes energy dissipation into lattice vibrations by means of a frequency and temperature dependent friction function. The theory provides dynamic structure factors for energy transfer derived from collisional time correlation functions. It describes the relaxation of a vibrationally excited atom or molecule within a model of a damped quantum harmonic oscillator bilinearly coupled to a bath of lattice oscillators. The collisional time correlation function is generalized to include friction effects and is applied to the vibrational relaxation of the frustrated translation mode of Na adsorbed on a Cu(001) surface, CO on Cu(001), and CO on Pt(111), following excitation by collisions with He atoms. Results for the frequency shift and width of line shapes versus surface temperature are in very good agreement with experimental measurements of inelastic He atom scattering. Our interpretation of the experimental results provides insight on the relative role of phonon versus electron-hole relaxation.  相似文献   

4.
IR spectra in the 'Finger Print' spectral range has great importance in qualitative and quantitative analysis of explosives like trinitrotoluene (TNT) and cyclotrimethyltrinitramine (RDX). Highly resolved IR bands of these compounds have been recorded in the 9.6 and 10.6 microm regions of CO2 laser. TNT and RDX are large molecules each having 21 atoms and it is very difficult to assign the modes of vibrations by comparison with those in other molecules making the vibrational assignments of observed bands a difficult task. The ab initio quantum chemical calculation is used for determining the molecular geometries and modes of vibration of these molecules with a view to assign their normal modes in the high resolution vibrational photoacoustic spectra. These assignments are very reliable in view of the good agreement between the observed and calculated frequencies of deuterated TNT.  相似文献   

5.
The molecular dipole moments, their derivatives, and the fundamental IR intensities of the fluoro-, chloro-, and fluorochloromethanes are determined from QTAIM atomic charges and dipoles and their fluxes at the MP2/6-311++G(3d,3p) level. Root-mean-square (rms) errors of 0.01 D and 5.6 km mol(-1) are found for the dipole moments and fundamental IR intensities calculated using QTAIM parameters when compared with those obtained directly from the MP2/6-311++(3d,3p) calculations and 0.04 D and 23.1 km mol(-1) when compared with the experimental values. Charge, charge flux, and dipole flux contributions are calculated for all the normal vibrations of these molecules. A large negative correlation coefficient of -0.92 is calculated between the charge flux and dipole flux contributions and indicates that electron transfer from one side of the molecule to the other during vibrations is accompanied by relaxation with electron density polarization in the opposite direction. The CF, CCl, and CH stretching normal modes of these molecules are shown to have characteristic sets of charge, charge flux, and dipole flux contributions. Although the FCF and ClCCl deformation normal modes can also be discriminated from one another based on the sizes and signs of these contributions, some HCH deformations have contributions that are similar to those for some of the ClCCl deformations.  相似文献   

6.
To facilitate the analysis of frequency-structure correlations in the amide I vibrational spectroscopy of proteins, we investigate visualization methods and spatial correlation functions that describe delocalized vibrations of proteins and protein secondary structures. To study those vibrational modes revealed in infrared spectroscopy, we characterize frequency-dependent bright states obtained from doorway mode analysis. Our visualization methods pictorially color code amplitude and phase of each oscillator within the structure to reveal spatially varying patterns characteristic of excitations within sheets and helices. Spatial correlation functions in the amplitude and phase of amide I oscillators quantitatively address the extent of delocalization and the alpha helical and beta sheet character of these modes. Specifically, we investigate the vibrations of idealized antiparallel beta sheets and alpha helices and perform case studies on three proteins: concanavalin A, myoglobin, and ubiquitin.  相似文献   

7.
The molecular dipole moments, their derivatives, and the fundamental IR intensities of the X2CY (X = H, F, Cl; Y = O, S) molecules are determined from QTAIM atomic charges and dipoles and their fluxes at the MP2/6-311++G(3d,3p) level. Root-mean-square errors of +/-0.03 D and +/-1.4 km mol(-1) are found for the molecular dipole moments and fundamental IR intensities calculated using quantum theory of atoms in molecules (QTAIM) parameters when compared with those obtained directly from the MP2/6-311++G(3d,3p) calculations and +/-0.05 D and 51.2 km mol(-1) when compared with the experimental values. Charge (C), charge flux (CF), and dipole flux (DF) contributions are reported for all the normal vibrations of these molecules. A large negative correlation coefficient of -0.83 is calculated between the charge flux and dipole flux contributions and indicates that electronic charge transfer from one side of the molecule to the other during vibrations is accompanied by a relaxation effect with electron density polarization in the opposite direction. The characteristic substituent effect that has been observed for experimental infrared intensity parameters and core electron ionization energies has been applied to the CCFDF/QTAIM parameters of F2CO, Cl2CO, F2CS, and Cl2CS. The individual atomic charge, atomic charge flux, and atomic dipole flux contributions are seen to obey the characteristic substituent effect equation just as accurately as the total dipole moment derivative. The CH, CF, and CCl stretching normal modes of these molecules are shown to have characteristic sets of charge, charge flux, and dipole flux contributions.  相似文献   

8.
9.
The dynamics of tripartite entanglement and intramolecular energy for one harmonic-and two anharmonic-vibrational modes in a symmetric trimer molecule is studied for various ini-tial states, where the entanglement is quantified in terms of concurrence and the interacting energy among three modes is calculated to establish a link between entanglement and en-ergy. It is shown that the concurrence and the interacting energy behave dominantly positive correlation for the localized state in the anharmonic-vibrational mode, while they are domi-nantly anti-correlated for the localized state in the harmonic-vibrational mode. The relation between bipartite entanglement and the energy in a subsystem is discussed as well. Those are useful for quantum computing and quantum information in high dimensional states prepared in polyatomic molecules.  相似文献   

10.
11.
Using catastrophe theory and the concept of a mutation path, an algorithm is developed that leads to the direct correlation of the normal vibrational modes of two structurally related molecules. The mutation path is defined by weighted incremental changes in mass and geometry of the molecules in question, which are successively applied to mutate a molecule into a structurally related molecule and thus continuously converting their normal vibrational spectra from one into the other. Correlation diagrams are generated that accurately relate the normal vibrational modes to each other by utilizing mode‐mode overlap criteria and resolving allowed and avoided crossings of vibrational eigenstates. The limitations of normal mode correlation, however, foster the correlation of local vibrational modes, which offer a novel vibrational measure of similarity. It will be shown how this will open new avenues for chemical studies. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold phenanthrene and diphenylacetylene in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer between naphthalene and Kr, energy transfer between phenanthrene and Kr shows a larger cross-section for vibrational to translational (V → T) energy transfer, a smaller cross-section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation. These differences are further enlarged in the comparison between naphthalene and diphenylacetylene. In addition, less complex formation and significant increases in the large V → T energy transfer probabilities, termed supercollisions in diphenylacetylene and Kr collisions were observed. The differences in the energy transfer between these highly vibrationally excited molecules are attributed to the low-frequency vibrational modes, especially those vibrations with rotation-like wide-angle motions.  相似文献   

13.
New symplectic integrators have been developed by combining molecular dynamics integration with the standard theory of molecular vibrations to solve the Hamiltonian equations of motion. The presented integrators analytically resolve the internal high-frequency molecular vibrations by introducing a translating and rotating internal coordinate system of a molecule and calculating normal modes of an isolated molecule only. The translation and rotation of a molecule are treated as vibrational motions with the vibrational frequency zero. All types of motion are thus described in terms of the normal coordinates. The method's time reversibility requirement was used to determine the equations of motion for internal coordinate system of a molecule. The calculation of long-range forces is performed numerically within the generalized second-order leap-frog scheme, in the same way as in standard second-order symplectic methods. The new methods for integrating classical equations of motion using normal mode analysis allow us to use a long integration step and are applicable to any system of molecules with one equilibrium configuration.  相似文献   

14.
The dynamics of quantum entanglement described by the von Neumann entropy is studied for the localized states of Fermi-resonance coupling vibrations in molecule CS2, where the interacting energy between the stretching and the bending modes is considered to establish a connection between entanglement and energy. It is shown that entanglement reveals dominant anti-correlation with the interacting energy for the stretch-localized state, while that exhibits dominantly positive correlation for the bend-localized state. The entanglement and the energy for the dislocalized states are discussed as well. Those are useful for molecular quantum computing and quantum information in high dimensional states.  相似文献   

15.
It is shown that F?rster's expression for the electronic energy transfer rate can be recast in a form predicted for exciton motion that interacts strongly with molecular vibrations. Using a simple model based on the Kennard-Stepanov theory, F?rster's expression for the spectral overlap is shown to be of a thermally activated form, as obtained previously by multiphonon theory. In contrast, the high-frequency internal vibrations contribute a factor which results from tunneling through a potential barrier between potential curves in the configuration coordinate diagram. We thus show that resonance energy transfer is equivalent to phonon-assisted hopping of a trapped excitonic polaron.  相似文献   

16.
采用准经典轨迹法,考察了H2O及H2S分子简正模激发态下分子内各态能量随时间变化的分布关系,讨论了激发能在各态间的转移规律.研究表明:简正模激发态能量转移倾向于频率彼此相近或对称性相同的态间.  相似文献   

17.
This review article considers the origin of vibrational anharmonicity in molecules, and the effects that vibrational resonances have on the anharmonicity constants which may be extracted from spectroscopic observations. The importance of the effects of Darling—Dennison resonances, which increase with increasing excitation, as well as Fermi resonances, are considered. The local mode approach to X—Y stretching vibrations is dealt with, as a means of simultaneously accounting for Darling—Dennison resonances and of inter-relating normal mode stretching anharmonicity constants, thus reducing the number of parameters to be determined. The inclusion of Fermi resonances, as necessary, into the calculation is next considered, and the joint local mode-normal mode analysis explained.Applications to ethylenic and methyl group molecules are made. The success of the analyses is demonstrated through complete sets of physically representative anharmonicity constants which reproduce vibrational observations into the visible (16 500 cm−1), and which are mutually self-consistent over molecules containing the same functional groups.Extensions of the simple local mode model are considered, as means of achieving anharmonicity parameters which should describe more closely the molecular potential energy surface, and hence the concomitant physical and chemical processes which it controls.  相似文献   

18.
基于从头算分子动力学(Born-oppenheimer molecular dynamics, BOMD)模拟, 构建了环硝胺六氢-1,3,5-三硝基-1,3,5-三嗪(RDX)单分子不同振动模式之间的耦合矩阵, 并计算了在不同加载能量下从低频振动模式到高频振动模式的最优能量传输路径. 结果表明, RDX单分子中—NNO2基团更有利于能量局域化, 振动模式v3v4在从低频振动模式到高频振动模式的能量传输过程中扮演着重要角色. 通过对v3v4两个振动模式的进一步分析发现, 加载能量的不同会导致RDX单分子能量传输路径的不同. 当加载能量较低时, RDX单分子倾向于从低频振动模式到中频振动模式再到高频振动模式的能量传输路径; 当加载能量较高时, 能量更倾向于从低频振动模式直接传输到高频振动模式上. 揭示了RDX分子内振动耦合能量转移的微观机制, 为进一步探索RDX将“机械能”转化为“化学能”的微观过程提供了理论基础.  相似文献   

19.
The relay stations play a significant role in long-range charge hopping transfer in proteins. Although studies have clarified that many more protein structural motifs can function as relays in charge hopping transfers by acting as intermediate charge carriers, the relaying properties are still poorly understood. In this work, taking a β-turn oligopeptide as an example, we report a dynamic character of a relay with tunable relaying properties using the density functional theory calculations. Our main finding is that a β-turn peptide can serve as an effective electron relay in facilitating long-range electron migration and its relay properties is vibration-tunable. The vibration-induced structural transient distortions remarkably affect the lowest occupied molecular orbital (LUMO) energy, vertical electron affinity and electron-binding mode of the β-turn oligopeptide and the singly occupied molecular orbital (SOMO) energy of the corresponding electron adduct and thus the relaying properties. Different vibration modes lead to different structural distortions and thus have different effects on the relaying properties and ability of the β-turn peptide. For the relaying properties, there approximately is a linear negative correlation of electron affinity with the LUMO energy of the β-turn or the SOMO energy of its electron adduct. Besides, such relaying properties also vary in the vibration evolution process, and the electron-binding modes may be tunable. As an important addition to the known static charge relaying properties occurring in various protein structural motifs, this work reports the dynamic electron-relaying characteristics of a β-turn oligopeptide with variable relaying properties governed by molecular vibrations which can be applied to different proteins in mediating long-range charge transfers. Clearly, this work reveals molecular vibration effects on the electron relaying properties of protein structural motifs and provides new insights into the dynamics of long-range charge transfers in proteins. © 2018 Wiley Periodicals, Inc.  相似文献   

20.
A procedure is developed to improve the quantitative evaluation of hydrogen transfer rates in polyatomic molecules and solids. The aim is to introduce a dynamical model that includes explicitly all vibrations participating in the transfer. This aim favors adoption of the golden-rule approach, since it treats all vibrational modes equally. To simplify the resulting multidimensional transfer integrals, two basic assumptions are introduced: (i) adiabatic separability of the hydrogenic modes directly involved in the tunneling from the other modes, and (ii) negligible anharmonicity for the latter. The number of effectively participating modes can then be reduced drastically by transformation to an appropriate local representation which allows analytical integration over most of these other modes. Those that remain involve vibrations of the atoms between which the hydrogen is transferred. Their frequency, reduced mass and displacement are expressed in terms of the harmonic force field of the system before and after transfer and can be unambiguously evaluated if these force fields are available. These modes replace the empirical effective modes used previously. The theory is applied successfully to single hydrogen transfer in dimethyl-glyoxime and double hydrogen transfer in porphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号