首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We consider the class of quadratically-constrained quadratic-programming methods in the framework extended from optimization to more general variational problems. Previously, in the optimization case, Anitescu (SIAM J. Optim. 12, 949–978, 2002) showed superlinear convergence of the primal sequence under the Mangasarian-Fromovitz constraint qualification and the quadratic growth condition. Quadratic convergence of the primal-dual sequence was established by Fukushima, Luo and Tseng (SIAM J. Optim. 13, 1098–1119, 2003) under the assumption of convexity, the Slater constraint qualification, and a strong second-order sufficient condition. We obtain a new local convergence result, which complements the above (it is neither stronger nor weaker): we prove primal-dual quadratic convergence under the linear independence constraint qualification, strict complementarity, and a second-order sufficiency condition. Additionally, our results apply to variational problems beyond the optimization case. Finally, we provide a necessary and sufficient condition for superlinear convergence of the primal sequence under a Dennis-Moré type condition. Research of the second author is partially supported by CNPq Grants 300734/95-6 and 471780/2003-0, by PRONEX–Optimization, and by FAPERJ.  相似文献   

2.
In this article, two second-order constraint qualifications for the vector optimization problem are introduced, that come from first-order constraint qualifications, originally devised for the scalar case. The first is based on the classical feasible arc constraint qualification, proposed by Kuhn and Tucker (Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 481–492, University of California Press, California, 1951) together with a slight modification of McCormick’s second-order constraint qualification. The second—the constant rank constraint qualification—was introduced by Janin (Math. Program. Stud. 21:110–126, 1984). They are used to establish two second-order necessary conditions for the vector optimization problem, with general nonlinear constraints, without any convexity assumption.  相似文献   

3.

In Andreani et al. (Weak notions of nondegeneracy in nonlinear semidefinite programming, 2020), the classical notion of nondegeneracy (or transversality) and Robinson’s constraint qualification have been revisited in the context of nonlinear semidefinite programming exploiting the structure of the problem, namely its eigendecomposition. This allows formulating the conditions equivalently in terms of (positive) linear independence of significantly smaller sets of vectors. In this paper, we extend these ideas to the context of nonlinear second-order cone programming. For instance, for an m-dimensional second-order cone, instead of stating nondegeneracy at the vertex as the linear independence of m derivative vectors, we do it in terms of several statements of linear independence of 2 derivative vectors. This allows embedding the structure of the second-order cone into the formulation of nondegeneracy and, by extension, Robinson’s constraint qualification as well. This point of view is shown to be crucial in defining significantly weaker constraint qualifications such as the constant rank constraint qualification and the constant positive linear dependence condition. Also, these conditions are shown to be sufficient for guaranteeing global convergence of several algorithms, while still implying metric subregularity and without requiring boundedness of the set of Lagrange multipliers.

  相似文献   

4.
In this paper, we mainly consider second-order sufficient conditions for vector optimization problems. We first present a second-order sufficient condition for isolated local minima of order 2 to vector optimization problems and then prove that the second-order sufficient condition can be simplified in the case where the constrained cone is a convex generalized polyhedral and/or Robinson??s constraint qualification holds.  相似文献   

5.
In this paper, we are concerned with a nonsmooth multiobjective optimization problem with inequality constraints. We introduce a second-order constraint qualification, which is a generalization of the Abadie constraint qualification and derive second-order Kuhn-Tucker type necessary conditions for efficiency under the constraint qualification. Moreover, we give some conditions which ensure the constraint qualification holds.  相似文献   

6.
Second-order necessary conditions for inequality and equality constrained C1, 1 optimization problems are derived. A constraint qualification condition which uses the recent generalized second-order directional derivative is employed to obtain these conditions. Various second-order sufficient conditions are given under appropriate conditions on the generalized second-order directional derivative in a neighborhood of a given point. An application of the secondorder conditions to a new class of nonsmooth C1, 1 optimization problems with infinitely many constraints is presented.  相似文献   

7.
A new first-order sufficient condition for penalty exactness that includes neither the standard constraint qualification requirement nor the second-order sufficient optimality condition is proposed for optimization problems with equality constraints.  相似文献   

8.
In recent years second-order sufficient conditions of an isolated local minimizer for convex composite optimization problems have been established. In this paper, second-order optimality conditions are obtained of aglobal minimizer for convex composite problems with a non-finite valued convex function and a twice strictly differentiable function by introducing a generalized representation condition. This result is applied to a minimization problem with a closed convex set constraint which is shown to satisfy the basic constraint qualification. In particular, second-order necessary and sufficient conditions of a solution for a variational inequality problem with convex composite inequality constraints are obtained. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

9.
In this paper a log-exponential smoothing method for mathematical programs with complementarity constraints (MPCC) is analyzed, with some new interesting properties and convergence results provided. It is shown that the stationary points of the resulting smoothed problem converge to the strongly stationary point of MPCC, under the linear independence constraint qualification (LICQ), the weak second-order necessary condition (WSONC), and some reasonable assumption. Moreover, the limit point satisfies the weak second-order necessary condition for MPCC. A notable fact is that the proposed convergence results do not restrict the complementarity constraint functions approach to zero at the same order of magnitude.  相似文献   

10.
We propose and analyze a perturbed version of the classical Josephy–Newton method for solving generalized equations. This perturbed framework is convenient to treat in a unified way standard sequential quadratic programming, its stabilized version, sequential quadratically constrained quadratic programming, and linearly constrained Lagrangian methods. For the linearly constrained Lagrangian methods, in particular, we obtain superlinear convergence under the second-order sufficient optimality condition and the strict Mangasarian–Fromovitz constraint qualification, while previous results in the literature assume (in addition to second-order sufficiency) the stronger linear independence constraint qualification as well as the strict complementarity condition. For the sequential quadratically constrained quadratic programming methods, we prove primal-dual superlinear/quadratic convergence under the same assumptions as above, which also gives a new result.  相似文献   

11.
The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence of sSQP had been previously established under the strong second-order sufficient condition for optimality (without any constraint qualification assumptions). We prove a stronger superlinear convergence result than the above, assuming the usual second-order sufficient condition only. In addition, our analysis is carried out in the more general setting of variational problems, for which we introduce a natural extension of sSQP techniques. In the process, we also obtain a new error bound for Karush–Kuhn–Tucker systems for variational problems that holds under an appropriate second-order condition.  相似文献   

12.

We introduce three new constraint qualifications for nonlinear second order cone programming problems that we call constant rank constraint qualification, relaxed constant rank constraint qualification and constant rank of the subspace component condition. Our development is inspired by the corresponding constraint qualifications for nonlinear programming problems. We provide proofs and examples that show the relations of the three new constraint qualifications with other known constraint qualifications. In particular, the new constraint qualifications neither imply nor are implied by Robinson’s constraint qualification, but they are stronger than Abadie’s constraint qualification. First order necessary optimality conditions are shown to hold under the three new constraint qualifications, whereas the second order necessary conditions hold for two of them, the constant rank constraint qualification and the relaxed constant rank constraint qualification.

  相似文献   

13.
In this paper, we deal with a conjecture formulated in Andreani et al. (Optimization 56:529–542, 2007), which states that whenever a local minimizer of a nonlinear optimization problem fulfills the Mangasarian–Fromovitz constraint qualification and the rank of the set of gradients of active constraints increases at most by one in a neighborhood of the minimizer, a second-order optimality condition that depends on one single Lagrange multiplier is satisfied. This conjecture generalizes previous results under a constant rank assumption or under a rank deficiency of at most one. We prove the conjecture under the additional assumption that the Jacobian matrix has a smooth singular value decomposition. Our proof also extends to the case of the strong second-order condition, defined in terms of the critical cone instead of the critical subspace.  相似文献   

14.
引进了一种二阶切导数,借助该切导数给出了变序结构集值优化问题取得局部弱非控点的二阶最优性必要条件.在某种特殊情况下,给出了一阶最优性条件.通过修正的Dubovitskij-Miljutin切锥导出的约束规格,给出了两个集值映射之和的二阶相依切导数的关系式,进一步得到目标函数与变锥函数的二阶相依切导数分开形式的最优性必要条件.  相似文献   

15.
We develop a new notion of second-order complementarity with respect to the tangent subspace related to second-order necessary optimality conditions by the introduction of so-called tangent multipliers. We prove that around a local minimizer, a second-order stationarity residual can be driven to zero while controlling the growth of Lagrange multipliers and tangent multipliers, which gives a new second-order optimality condition without constraint qualifications stronger than previous ones associated with global convergence of algorithms. We prove that second-order variants of augmented Lagrangian (under an additional smoothness assumption based on the Lojasiewicz inequality) and interior point methods generate sequences satisfying our optimality condition. We present also a companion minimal constraint qualification, weaker than the ones known for second-order methods, that ensures usual global convergence results to a classical second-order stationary point. Finally, our optimality condition naturally suggests a definition of second-order stationarity suitable for the computation of iteration complexity bounds and for the definition of stopping criteria.  相似文献   

16.
Three constraint qualifications (the weak generalized Robinson constraint qualification, the bounded constraint qualification, and the generalized Abadie constraint qualification), which are weaker than the generalized Robinson constraint qualification (GRCQ) given by Yen (1997) [1], are introduced for constrained Lipschitz optimization problems. Relationships between those constraint qualifications and the calmness of the solution mapping are investigated. It is demonstrated that the weak generalized Robinson constraint qualification and the bounded constraint qualification are easily verifiable sufficient conditions for the calmness of the solution mapping, whereas the proposed generalized Abadie constraint qualification, described in terms of graphical derivatives in variational analysis, is weaker than the calmness of the solution mapping. Finally, those constraint qualifications are written for a mathematical program with complementarity constraints (MPCC), and new constraint qualifications ensuring the C-stationary point condition of a MPCC are obtained.  相似文献   

17.
In this paper, a mathematical program with complementarity constraints (MPCC) is reformulated as a nonsmooth constrained mathematical program via the Fischer–Burmeister function. Smooth penalty functions are used to treat this nonsmooth constrained program. Under linear independence constraint qualification, and upper level strict complementarity condition, together with some other mild conditions, we prove that the limit point of stationary points satisfying second-order necessary conditions of unconstrained penalized problems is a strongly stationary point, hence a B-stationary point of the original MPCC. Furthermore, this limit point also satisfies a second-order necessary condition of the original MPCC. Numerical results are presented to test the performance of this method.  相似文献   

18.
In this paper, we consider a class of mathematical programs governed by second-order cone constrained parameterized generalized equations. We reformulate the necessary optimality conditions as a system of nonsmooth equations under linear independence constraint qualification and the strict complementarity condition. A set of second order sufficient conditions is proposed, which is proved to be sufficient for the second order growth of the stationary point. The smoothing Newton method in [40] is employed to solve the system of nonsmooth equations whose strongly BD-regularity at a solution point is demonstrated under the second order sufficient conditions. Several illustrative examples are provided and discussed.  相似文献   

19.
The Mangasarian-Fromovitz constraint qualification is a central concept within the theory of constraint qualifications in nonlinear optimization. Nevertheless there are problems where this condition does not hold though other constraint qualifications can be fulfilled. One of such constraint qualifications is the so-called quasinormality by Hestenes. The well known error bound property (R-regularity) can also play the role of a general constraint qualification providing the existence of Lagrange multipliers. In this note we investigate the relation between some constraint qualifications and prove that quasinormality implies the error bound property, while the reciprocal is not true.  相似文献   

20.
The concept of qualification for spectral regularization methods (SRM) for inverse ill-posed problems is strongly associated to the optimal order of convergence of the regularization error (Engl et al. in Regularization of inverse problems. Mathematics and its applications, vol. 375, Kluwer Academic, Dordrecht, 1996; Mathé in SIAM J. Numer. Anal. 42(3):968–973, 2004; Mathé and Pereverzev in Inverse Probl. 19(3):789–803, 2003; Vainikko in USSR Comput. Math. Math. Phys. 22(3): 1–19, 1982). In this article, the definition of qualification is extended and three different levels are introduced: weak, strong and optimal. It is shown that the weak qualification extends the definition introduced by Mathé and Pereverzev (Inverse Probl. 19(3):789–803, 2003), mainly in the sense that the functions associated with orders of convergence and source sets need not be the same. It is shown that certain methods possessing infinite classical qualification (e.g. truncated singular value decomposition (TSVD), Landweber’s method and Showalter’s method) also have generalized qualification leading to an optimal order of convergence of the regularization error. Sufficient conditions for a SRM to have weak qualification are provided and necessary and sufficient conditions for a given order of convergence to be strong or optimal qualification are found. Examples of all three qualification levels are provided and the relationships between them as well as with the classical concept of qualification and the qualification introduced in Mathé and Pereverzev (Inverse Probl. 19(3):789–803, 2003) are shown. In particular, SRMs having extended qualification in each one of the three levels and having zero or infinite classical qualification are presented. Finally, several implications of this theory in the context of orders of convergence, converse results and maximal source sets for inverse ill-posed problems, are shown. This work was supported by DARPA/SPO, NASA LaRC and the National Institute of Aerospace under Grant VT-03-1, 2535, by AFOSR Grants F49620-03-1-0243 and FA9550-07-1-0273, by Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and by Universidad Nacional del Litoral, U.N.L., Argentina, through Project CAI+D 2006, P.E. 236.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号