首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Identifying early cellular events in response to a chemotherapy drug treatment, in particular at low doses that will destroy the highest possible number of cancer cells, is an important issue in patient management. In this study, we employed Fourier transform infrared spectroscopy as a potential tool to access such information. We used as model the non-small cell lung cancer cell line, Calu-1. They were exposed to cytostatic doses (0.1 to 100 nM for 24, 48 and 72 h) of gemcitabine, an anti-tumour drug, currently used in treatment of lung cancer patients. In these conditions, inhibition of cell proliferation ranges from weak (≤5%), to moderate (∼23%), to high (82–95%) without affecting cell viability. Following drug treatment as a function of doses and incubation times, the spectra of cell populations and of individual cells were acquired using a bench-top IR source and a synchrotron infrared microscope. It is demonstrated that spectral cell response to gemcitabine is detectable at sublethal doses and that effects observed on cell populations are similar to those from single cells. Using cluster analysis, spectra could be classified in two main groups: a first group that contains spectra of cells exhibiting a weak or moderate proliferation rate and a second group with spectra from cells presenting a high growth inhibition. These results are promising since they show that effects of subtoxic doses can also be monitored at the single-cell level with the clinical implications that this may have in terms of patient benefit and response to chemotherapy.  相似文献   

2.
Raman spectroscopy has proven its potential for the analysis of cell constituents and processes. However, sample preparation methods compatible with clinical practice must be implemented for collection of accurate spectral information. This study aims at assessing, using micro-Raman imaging, the effects of some routinely used fixation methods such as formalin-fixation, formalin-fixation/air drying, cytocentrifugation, and air drying on intracellular spectral information. Data were compared with those acquired from single living cells. In parallel to these spectral information, cell morphological modifications that accompany sample preparation were compared. Spectral images of isolated cells were first analyzed in an unsupervised way using hierarchical cluster analysis (HCA), which allowed delimitation of the cellular compartments. The resulting nuclei cluster centers were compared and revealed at the molecular level that fixation induced changes in spectral information assigned to nucleic acids and proteins. In a second approach, a supervised fitting procedure using model spectra of DNA, RNA, and proteins, chemically extracted from living cells, revealed very small modifications at the level of the localization and quantification of these macromolecules. Finally, HCA and principal components analysis (PCA) performed on individual spectra randomly selected from the nuclear regions showed that formalin-fixation and cytocentrifugation are sample preparation methods that have little impact on the biochemical information as compared to living conditions. Any step involving cell air drying seems to accentuate the spectral deviations from the other preparation methods. It is therefore important in a future context of spectral cytology to take into account these variations.  相似文献   

3.
Poly(ethylene glycol)-poly(lactic acid) copolymer, prepared by ring opening polymerization, was used as a single platform to co-deliver both hydrophilic doxorubicin and hydrophobic docetaxel (DTX) in a simulated physiological environment. The average size of the negatively charged drug loaded polymeric micelles were found to be 293 nm. The drug loading (%) and encapsulation efficiency (%) were calculated to be 1.21 and 59.0, respectively. The in vitro cytotoxicity test using MCF7 breast cancer cells was conducted using 1 × 104 cells in 10% FBS and 1% antibiotic, and the absorbance of formazan was evaluated at 570 nm. Cell growth inhibition by MTT assay showed viability of 33% of the MCF7 cells after treatment with drug-loaded micelles for 48 h. Controlled release of drugs from the polymeric micelles indicated a burst release effect initially; whereas, 98% of drug could be released at pH 7.4 within a time period of 96 h. Time period for drug release shorten to 48 h only in simulated mild acidic pH (5.4) condition. The in vitro drug release study from micelles indicated synergistic cytotoxicity effect in human metastatic breast cancer MCF7 cell.  相似文献   

4.
Drug repurposing is an emerging strategy, which uses already approved drugs for new medical indications. One such drug is gemcitabine, an anticancer drug that only works at high doses since a portion is deactivated in the serum, which causes toxicity. In this review, two methods were discussed that could improve the anticancer effect of gemcitabine. The first is a chemical modification by conjugation with cell-penetrating peptides, namely penetratin, pVEC, and different kinds of CPP6, which mostly all showed an increased anticancer effect. The other method is combining gemcitabine with repurposed drugs, namely itraconazole, which also showed great cancer cell inhibition growth. Besides these two strategies, physiologically based pharmacokinetic models (PBPK models) are also the key for predicting drug distribution based on physiological data, which is very important for personalized medicine, so that the correct drug and dosage regimen can be administered according to each patient’s physiology. Taking all of this into consideration, it is believed that gemcitabine can be repurposed to have better anticancer effects.  相似文献   

5.
Cancer stem cells (CSCs) represent a small subpopulation within a tumour. These cells possess stem cell-like properties but also initiate resistance to cytotoxic agents, which contributes to cancer relapse. Natural compounds such as curcumin that contain high amounts of polyphenols can have a chemosensitivity effect that sensitises CSCs to cytotoxic agents such as cisplatin. This study was designed to investigate the efficacy of curcumin as a chemo-sensitiser in CSCs subpopulation of non-small cell lung cancer (NSCLC) using the lung cancer adenocarcinoma human alveolar basal epithelial cells A549 and H2170. The ability of curcumin to sensitise lung CSCs to cisplatin was determined by evaluating stemness characteristics, including proliferation activity, colony formation, and spheroid formation of cells treated with curcumin alone, cisplatin alone, or the combination of both at 24, 48, and 72 h. The mRNA level of genes involved in stemness was analysed using quantitative real-time polymerase chain reaction. Liquid chromatography-mass spectrometry was used to evaluate the effect of curcumin on the CSC niche. A combined treatment of A549 subpopulations with curcumin reduced cellular proliferation activity at all time points. Curcumin significantly (p < 0.001) suppressed colonies formation by 50% and shrank the spheroids in CSC subpopulations, indicating inhibition of their self-renewal capability. This effect also was manifested by the down-regulation of SOX2, NANOG, and KLF4. Curcumin also regulated the niche of CSCs by inhibiting chemoresistance proteins, aldehyde dehydrogenase, metastasis, angiogenesis, and proliferation of cancer-related proteins. These results show the potential of using curcumin as a therapeutic approach for targeting CSC subpopulations in non-small cell lung cancer.  相似文献   

6.
Bioorthogonal chemistry refers to chemical reactions that can occur within a living system without altering native biochemical processes. Applications of this concept extend to studies on a group of biomolecules that includes glycans, proteins, and lipids. In this study, a strategy for isolating cell surface glycoproteins and based on bioorthogonal chemistry was employed to identify new cancer-related glycoproteins. A novel alkyne reagent containing one disulfide bond was synthesized for the enrichment of glycoproteins metabolized with peracetylated N-azidoacetylmannosamine, which was applied on three different cancer cell lines, and all isolated proteins were analyzed by high-performance liquid chromatography-tandem mass spectrometry. The strategy of purifying cell surface glycoproteins introduced in this article was shown to be reliable, and a total of 56 cell surface glycoproteins were identified. Neuronal cell adhesion molecule was found uniquely expressed in A549 lung adenocarcinoma, and its expression in non-small-cell lung carcinomas was detected by immunohistochemistry. Furthermore, a significant increase of neuronal cell adhesion molecule expression was identified in non-small-cell lung adenocarcinoma compared with adjacent noncancerous tissues, and could be a novel potential target and marker in cancer treatment and detection.  相似文献   

7.
This Personal Account highlights the capabilities of spontaneous Raman microspectroscopy for studying fundamental biological processes in a single living cell. Raman microspectroscopy provides time‐ and space‐resolved vibrational Raman spectra that contain detailed information on the structure and dynamics of biomolecules in a cell. By using yeast as a model system, we have made great progress in the development of this methodology. The results that we have obtained so far are described herein with an emphasis placed on how three cellular processes, that is, cell‐division, respiration, and cell‐death, are traced and elucidated with the use of time‐ and space‐resolved structural information that is extracted from the Raman spectra. For cell‐division, compositional‐ and structural changes of various biomolecules are observed during the course of the whole cell cycle. For respiration, the redox state of mitochondrial cytochromes, which is inferred from the resonance Raman bands of cytochromes, is used to evaluate the respiration activity of a single cell, as well as that of isolated mitochondrial particles. Special reference is made to the “Raman spectroscopic signature of life”, which is a characteristic Raman band at 1602 cm?1 that is found in yeast cells. This signature reflects the cellular metabolic activity and may serve as a measure of mitochondrial dysfunction. For cell‐death, “cross‐talk” between the mitochondria and the vacuole in a dying cell is suggested. DOI 10.1002/tcr.201200008  相似文献   

8.
Proteins in living cells interact specifically or nonspecifically with an enormous number of biomolecules. To understand the behavior of proteins under intracellular crowding conditions, it is indispensable to observe their three‐dimensional (3D) structures at the atomic level in a physiologically natural environment. We demonstrate the first de novo protein structure determinations in eukaryotes with the sf9 cell/baculovirus system using NMR data from living cells exclusively. The method was applied to five proteins, rat calmodulin, human HRas, human ubiquitin, T. thermophilus HB8 TTHA1718, and Streptococcus protein G B1 domain. In all cases, we could obtain structural information from well‐resolved in‐cell 3D nuclear Overhauser effect spectroscopy (NOESY) data, suggesting that our method can be a standard tool for protein structure determinations in living eukaryotic cells. For three proteins, we achieved well‐converged 3D structures. Among these, the in‐cell structure of protein G B1 domain was most accurately determined, demonstrating that a helix‐loop region is tilted away from a β‐sheet compared to the conformation in diluted solution.  相似文献   

9.
It may be hypothesized that the lipoxygenase (LOX) metabolic pathway plays an important role in photodynamic therapy (PDT) of malignant tumours, and modification of this pathway may result in administration of lower doses of photodynamic active agents accompanied by reduced side effects. In this study, we examine in more detail the cytokinetic parameters of human colon adenocarcinoma HT-29 cells pre-treated for 48 or 24h with LOX inhibitor MK-886, followed by PDT induced by hypericin. Based on MTT assay the concentrations of both agents (MK-886 and hypericin) with relatively slight (non-significant) cytotoxic effects were selected. These concentrations were used for combined treatment, where MTT response, total cell number, floating cells quantification, viability, cell cycle progression and DNA synthesis were detected. Hoechst/PI staining, PARP fragmentation and mitochondrial membrane potential (MMP) were evaluated to determine the extent of apoptosis. While MK-886 alone caused mainly necrosis, 48h pre-treatment of cells with MK-886 followed by PDT with hypericin clearly shifted the type of cell death to apoptosis. PDT with hypericin alone caused apoptosis in 19% of the cell population. Some combined modalities significantly potentiated the apoptotic effect (31% of apoptotic cells; 2.5microM MK-886/0.1microM hypericin), i.e., by 60% more than after single treatment with hypericin. Increased apoptosis was confirmed by PARP (116kDa) cleavage to characteristic 89kDa fragments and changes in MMP. Increasing concentration of MK-886 was accompanied by massive changes in the cell cycle progression. Combined treatment with lower concentrations of MK-886 and hypericin increased accumulation of cells in the S phase, accompanied by inhibition of DNA synthesis. Increasing concentration of MK-886 in this combination caused the opposite effect, manifesting significant accumulation of cells in the G0/G1 phase. More pronounced effects were observed after the 48h pre-treatment schedule. This anti-proliferative effect was confirmed by BrdU incorporation. These results indicate that combined treatment involving PDT and LOX inhibitor MK-886 may improve the therapeutic effectiveness of PDT.  相似文献   

10.
Chemotherapy is the most common treatment for all cancer patients but this treatment poses many side effects due to lack of drug’s selectivity. To overcome this problem, utilizing a better and more effective delivery agent is the solution. Mesoporous silica nanoparticles (MSNs) emerged as a promising platform in development of drug delivery agent. This is due to its desirable properties such as tunable pores, large surface area, good biocompatibility and easy functionalization. Furthermore, these properties can be tuned through the utilization of alternative template such as pyridinium ionic liquid. Besides, by employing surface functionalization, the effectiveness of MSNs as drug delivery agent may also increase. This work reported the usage of 1-hexadecylpyridinium bromide ionic liquid as template for MSNs production and the surface of MSNs was then further functionalized via post – grafting method in order to obtain MSN – NH2, MSN – SH and MSN – COOH as drug carrier, respectively. These functionalized MSNs were then used to study the drug loading and drug release of hydrophilic drug, gemcitabine and hydrophobic drug, quercetin. For quercetin, MSN-NH2 had the highest drug loading percentage (72%) and slowest release (14%) in 48 h while for gemcitabine, it was found that MSN-COOH had the highest drug loading percentage (45%) and slowest release (15%) in 48 h. Based on the results, it is suggested that mesoporous silica nanoparticle with surface functionalization has suitable properties for controlled drug release which gives constant release behavior over a period of time to avoid repeated administration of drug where the drug is administered at a fixed dosage and regular time interval.  相似文献   

11.
Due to the heterogeneous and variable drug sensitivity of tumor cells, real-time monitoring of a patient''s drug response is desirable for implementing personalized and dynamic therapy. Although considerable efforts have been directed at drug screening in living cells, performing repeated drug sensitivity analysis using patient-derived primary tumor cells at the single-cell level remains challenging. Here, we present an efficient approach to assess phenotype-related drug sensitivity at the single-cell level using patient-derived circulating tumor cells (CTCs) based on a drug sensitivity microfluidic chip (DS-Chip). The DS-Chip consists of a drug gradient generator and parallel cell traps, achieving continuous single CTC capture, drug gradient distributions, drug stimulation, fluorescent probe labeling and three-color fluorescence imaging. Based on the established DS-Chip, we investigated the drug sensitivity of single cells by simultaneously monitoring epithelial–mesenchymal transition (EMT) biomarkers and apoptosis in living cells, and verified the correlation between EMT gradients and drug sensitivity. Using the new approach, we further tested the optimal drug response dose in individual CTCs isolated from 5 cancer patients through fluorescence analysis of EMT and apoptosis. The DS-Chip allows noninvasive and real-time measurements of the drug sensitivity of a patient''s tumor cells during therapy. This developed approach has practical significance and can effectively guide drug selection and therapeutic evaluation for personalized medicine.

Due to the heterogeneous and variable drug sensitivity of tumor cells, real-time monitoring of a patient''s drug response is desirable for implementing personalized and dynamic therapy.  相似文献   

12.
Aimed at developing accurate, reliable and cost-saving analytical techniques for drugs screening we evaluated the potential of Fourier Transform (FT) InfraRed (IR) microspectroscopy (microFTIR) as a quantitative pre-diagnostic approach for the rapid identification of IR signatures of drugs targeting specific molecular pathways causing Chronic Myeloid Leukemia (CML). To obtain reproducible FTIR absorbance spectra at the necessary spatial resolution we optimized sample preparation and acquisition parameters on a single channel Mercury-Cadmium-Telluride (MCT) detector in the spectral interval of frequencies from 4000 to 800 cm(-1). Single K562 cells were illuminated by Synchrotron Radiation (SR) and a number of ~15 K562 cells spread in monolayer were illuminated by a conventional IR source (Globar), respectively. Combining IR spectral data with the results of complementary biochemical investigations carried out in samples by different analytical methods we identified and cross-validated IR signatures of drugs targeting the oncogenic protein BCR/ABL and its associated abnormal tyrosine kinase activity in K562 cell line. Unsupervised pattern recognition performed by Hierarchical Cluster Analysis (HCA) clustered the spectra of single K562 cells in two distinct groups roughly corresponding to living and to apoptotic cells, respectively. The corresponding IR spectral profiles were assumed to represent drug-resistant and drug-sensitive cells. Significant variations with increasing percentages of apoptotic cells were observed after the treatment of K562 cells with drugs that directly or indirectly target BCR/ABL. In conclusion, we suggest that microFTIR associated with multivariate data analysis may be useful to assess drug compounds in ex vivo cancer cell models and possibly peripheral blast cells from CML patients.  相似文献   

13.
By utilizing nanomaterials including one-dimensional materials (1DMs) and two-dimensional materials (2DMs), the recent development for the determination of multiple biomolecules has been focused.  相似文献   

14.
15.
The complexity of biological samples determines that the detection of a single biomolecule is unable to satisfy actual needs. Moreover, the “false positives” results caused by a single biomolecule detections easily leads to erroneous clinical diagnosis and treatment. Thus, it is important for the homogenous quantification of multiple biomolecules in not only basic research but also practical application. As a consequent, a large number of literatures have been exploited to monitor multiple biomolecules in homogenous solution, enabling facilitating the development of the disease diagnosis, treatment as well as drug discovery. One-dimensional nanomaterials and two-dimensional nanomaterials have special physical and chemical properties, such as good electrochemical properties, stable structure, large specific surface area, and biocompatibility, which are widely used in electrochemical and fluorescent detection of biomolecules. This tutorial review highlights the recent development for the detection of multiple biomolecules by using nanomaterials including one-dimensional materials (1DMs) as well as two-dimensional materials (2DMs).  相似文献   

16.
利用光镊拉曼光谱技术研究吲哚对金葡菌细胞中葡萄球菌黄素合成的抑制作用以及色素含量在分批培养过程中的动态变化。收集经不同浓度吲哚(终浓度为0,0.2,0.6,0.8,1.2和1.5 mmol/L)处理后的以及不同培养时间的金葡菌单细胞的拉曼光谱,以光谱1523 cm-1峰强度表征色素含量,并与紫外可见分光光度法得到的结果进行比较。结果表明,细菌拉曼光谱1523 cm-1峰强度与分光光度法测得的色素含量有良好的线性关系,相关系数达0.9772;群体和单细胞水平的光谱数据均表明,吲哚可剂量依赖性地抑制葡萄球菌黄素的合成,色素含量降低幅度超过70%;在分批培养中细菌色素含量在对数生长中期(12 h)达到最大值,各个时间点的群体内部细胞间色素含量的异质性较小,RSD在39.2%~61.1%之间。本研究表明光镊拉曼光谱技术是一种在单细胞水平分析葡萄球菌黄素含量的可靠方法。  相似文献   

17.
The phototoxic effect of meso-tetra-hydroxyphenyl-chlorin (mTHPC)-mediated photodynamic therapy (PDT) on human microvascular endothelial cells (hMVEC) was compared with that on human fibroblasts (BCT-27) and two human tumor cell lines (HMESO-1 and HNXOE). To examine the relationship between intrinsic phototoxicity and intracellular mTHPC content, we expressed cell survival as a function of cellular fluorescence. On the basis of total cell fluorescence, HNXOE tumor cells were the most sensitive and BCT-27 fibroblasts the most resistant, but these differences disappeared after correcting for cell volume. Endothelial cells were not intrinsically more sensitive to mTHPC-PDT than tumor cells or fibroblasts. Uptake of mTHPC in hMVEC increased linearly to at least 48 h, whereas drug uptake in the other cell lines reached a maximum by 24 h. No difference in drug uptake was seen between the cell lines during the first 24 h, but by 48 h hMVEC had a 1.8- to 2.8-fold higher uptake than other cell lines. Endothelial cells showed a rapid apoptotic response after mTHPC-mediated PDT, whereas similar protocols gave a delayed apoptotic or necrotic like response in HNXOE. We conclude that endothelial cells are not intrinsically more sensitive than other cell types to mTHPC-mediated PDT but that continued drug uptake beyond 24 h may lead to higher intracellular drug levels and increased photosensitivity under certain conditions.  相似文献   

18.
Inhibition of the EGFR signaling pathway is one of the attractive therapeutic targets for pancreatic cancer as recent studies demonstrated that EGFR is over‐expressed in pancreatic cancer. In this article we have demonstrated the design of targeted drug delivery system containing Bovine Serum Albumin (BSA) microspheres as delivery vehicle, gemcitabine as anticancer drug and anti‐EGFR (epidermal growth factor receptor) monoclonal antibody as targeting agent. The conjugated BSA microspheres were characterized by several physico‐chemical techniques such as scanning electron microscope, optical microscopy, fluorescent microscopy etc. Administration of these BSA microspheres containing gemcitabine and anti‐EGFR (BSA‐Gem‐EGFR) shows significant inhibition of pancreatic cancer cells (AsPC1) compared to the cells treated with only BSA microspheres, BSA with gemcitabine (BSA‐Gem), and free gemcitabine. This strategy could be used as a generalized approach for the treatment of pancreatic cancer along with other cancers which overexpress EGFR on cell surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This study was designed to investigate the combination effects of brucine and gemcitabine, each with anticancer properties, in MCF-7 human breast cancer cells in culture. With regard to cell viability, effects of both the drugs and their combinations were inversely proportional to dose and time. For various proportional drug combinations studied, combination effects were analysed using CompuSyn software. The analyses revealed synergistic and/or additive effects regarding cell viability, anchorage-independent growth and cell migration. Combination analyses exhibited diversified impacts of the type of combination treatment, namely pretreatment with either drug followed by exposure to the other, or treatment with both drugs at the same time. Compared with untreated cells, combination treatment of asynchronised MCF-7 cells resulted in 17.2 × decrease in G2 phase, increasing G1 (2.1 × ) and S (1.5 × ) phase cells in cell cycle analysis. Brucine, either individually or in combination, but not gemcitabine, inhibited NF-kB subunit (p65) expression in MCF-7 cells.  相似文献   

20.
Fluorescence imaging could be the most powerful technique available for observing spatial and temporal dynamics of biomolecules in living cells, if fluorescent indicators for the relevant biomolecules become available. We have recently developed fluorescent indicators for a variety of second messengers or protein phosphorylations. Using the indicators, we have visualized spatial and temporal dynamics of these molecular events in single living cells. These fluorescent indicators are becoming an indispensable tool for understanding the complex mechanism of signal transduction in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号