首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A straightforward method of synthesis of heteroleptic tin (II) alkoxides stabilized by one intramolecular coordination bond was developed. Addition of one equivalent of dimethylamino ethanol to diamide Sn(N(SiMe3)2)2 (5) yields alkoxy-amido derivative Sn(OCH2CH2NMe2)(N(SiMe3)2) (2). Further addition of alcohol leads to corresponding heteroleptic dialkoxides Sn(OCH2CH2NMe2)(OR) (R = Me (6), Et (7), iPr (8), tBu (9), Ph (10)). Catalytic activity of tin (II) compounds in polyurethane formation was tested.  相似文献   

2.
A series of mononuclear ruthenium complexes [RuCl(CO)(PMe3)3(CHCH-C6H4-R-p)] (R = H (2a), CH3 (2b), OCH3 (2c), NO2 (2d), NH2 (2e), NMe2 (2f)) has been prepared. The respective products have been characterized by elemental analyses, NMR spectrometry, and UV-Vis spectrophotometry. The structures of complexes 2c and 2d have been established by X-ray crystallography. Electrochemical studies have revealed that electron-releasing substituents facilitate monometallic ruthenium complex oxidation, and the substituent parameter values (σ) show a strong linear correlation with the anodic half-wave or oxidation peak potentials of the complexes.  相似文献   

3.
A straightforward method for the preparation of metallo carbosiloxanes of type Si(OCH2CH2CH2SiMe2[OCH2PPh2M(CO)n])4 (n = 3, M = Ni, 7a; n = 4, M = Fe, 7b; n = 5: M = Mo, 7c; M = W, 7d), Si(OCH2CH2CH2SiMe[OCH2PPh2Ni(CO)3]2)4 (8) and Me2Si(OCH2CH2CH2SiMe[OCH2PPh2Ni(CO)3]2)2 (11) is described. The reaction of Si(OCH2CH2CH2SiMeXCl)4 (1: X = Me, 2: X = Cl) or Me2Si(OCH2CH2CH2SiMeCl2)2 (9) with HOCH2PPh2 (3) produces Si(OCH2CH2CH2SiMe2(OCH2PPh2))4 (4), Si(OCH2CH2CH2SiMe(OCH2PPh2)2)4 (5) or Me2Si(OCH2CH2CH2SiMe(OCH2PPh2)2)2 (10) in presence of DABCO. Treatment of the latter molecules with Ni(CO)4 (6a), Fe2(CO)9 (6b), M(CO)5(Thf) (6c: M = Mo; 6d: M = W), respectively, gives the title compounds 7a-7d, 8 and 11 in which the PPh2 groups are datively bound to a 16-valence-electron metal carbonyl fragment.The formation of analytical pure and uniform branched and dendritic metallo carbosiloxanes is based on elemental analysis, and IR, 1H, 13C{1H}, 29Si{1H} and 31P{1H} NMR spectroscopic studies. In addition, ESI-TOF mass spectrometric studies were carried out.  相似文献   

4.
TeX4 (X = Cl, Br) react in HCl/HBr with [Ph(CH3)2Te]X (X = Cl, Br) to give [PhTe(CH3)2]2[TeCl6] (1) and [PhTe(CH3)2]2[TeBr6] (2). The reaction of PhTeX3 (X = Cl, Br, I) in cooled methanol with [(Ph)3Te]X (X = Cl, Br, I) leads to [Ph3Te][PhTeCl4] (3), [Ph3Te][PhTeBr4] (4) and [Ph3Te][PhTeI4] (5). In the lattices of the telluronium tellurolate salts 1 and 2, octahedral TeCl6 and TeBr6 dianions are linked by telluronium cations through Te?Cl and Te?Br secondary bonds, attaining bidimensional (1) and three-dimensional (2) assemblies. The complexes 3, 4 and 5 show two kinds of Te?halogen secondary interactions: the anion-anion interactions, which form centrosymmetric dimers, and two identical sets of three telluronium-tellurolate interactions, which accomplish the centrosymmetric fundamental moiety of the supramolecular arrays of the three compounds, with the tellurium atoms attaining distorted octahedral geometries. Also phenyl C-H?halogen secondary interactions are structure forming forces in the crystalline structures of compounds 3, 4 and 5.  相似文献   

5.
The oxime-substituted NCN-pincer molecules HONCH-1-C6H3(CH2NMe2)2-3,5 (2a) and HONCH-4-C6H2(CH2NMe2)2-2,6-Br-1 (2b) were accessible by treatment of the benzaldehydes H(O)C-4-C6H3(CH2NMe2)2-3,5 (1a) and H(O)C-4-C6H2(CH2NMe2)2-2,6-Br-1 (1b) with an excess of hydroxylamine. In the solid state both compounds are forming polymers with intermolecular O-H?N connectivities between the Me2NCH2 substituents and the oxime entity of further molecules of 2a and 2b, respectively. Characteristic for 2a and 2b is a helically arrangement involving a crystallographic 21 screw axis of the HONCH-1-C6H3(CH2NMe2)2-3,5 and HONCH-4-C6H2(CH2NMe2)2-2,6-Br-1 building blocks.The reaction of 2b with equimolar amounts of [Pd2(dba)3 · CHCl3] (3) (dba = dibenzylidene acetone) or [Pt(tol)2(SEt2)]2 (4) (tol = 4-tolyl) gave by an oxidative addition of the C-Br unit to M coordination polymers with a [(HONCH-4-C6H2(CH2NMe2)2-2,6)MBr] repeating unit (5: M = Pd, 6: M = Pt). Complexes 5 and 6 are in the solid state linear hydrogen-bridged polymers with O-H?Br contacts between the oxime entities and the metal-bonded bromide.  相似文献   

6.
The reaction between ClCH2-R-CH2Cl, R = p-C6H4, and [Ph3Sn]Li+ yields Ph3Sn-CH2-R-CH2-SnPh3 (1) in high yield. The related known compound R = CH2CH2 (1a) is synthesized by the reaction of the di-Grignard reagent BrMg(CH2)4MgBr with two equivalents of Ph3SnCl. Cleavage of a single Sn-Ph group at each tin centre of both compounds using HCl/Et2O yields the corresponding bis-chlorostannanes Ph2ClSn-CH2-R-CH2-SnClPh2, R = (CH2)4 (2) and R = C6H4 (3), respectively. Compounds 1, 2 and 3 are crystalline solid materials and their single crystal X-ray structures are reported. In the solid state both 2 and 3 form self-assembled ladder structures involving alternating intermolecular Cl-Sn?Cl and Cl?Sn-Cl bonded chains at both ends of the distannanes with 5-coordinate tin atoms. Recrystallization of 3 from CH2Cl2 in the presence of DMF yields the bis-DMF adduct (4) in which no self-assembled structures were noted. Evaluation of the chlorostannanes 2 and 3 against a suite of bacteria, Staphylococcus aureus, Escherichia coli and Photobacterium phosphoreum is reported and compared to the related mono-chlorostannanes Ph2(CH3)SnCl and Ph2(PhCH2)SnCl.  相似文献   

7.
New stable heteroleptic germanium(II) and tin(II) compounds [(SiMe3)2N-E14-OCH2CH2NMe2]n (E14 = Ge, n = 1 (1), Sn, n = 2 (2)) have been synthesized and their crystal structures have been determined by X-ray diffraction analysis. While compound 1 is monomer stabilized by intramolecular Ge ← N coordination, compound 2 is associated to dimer via intermolecular dative Sn ← O interactions.  相似文献   

8.
The reaction of HgCl2 and Te(R)CH2SiMe3 [R = CH2SiMe3 (1), Ph (2)] in ethanol yielded a mononuclear complex [HgCl2{Te(R)CH2SiMe3}2] (R = Ph, 3a; R = CH2SiMe3, 3b). The recrystallization of 3a or 3b from CH2Cl2 produced a dinuclear complex [Hg2Cl2(μ-Cl)2{Te(R)CH2SiMe3}2] (R = Ph, 4a; R = CH2SiMe3, 4b). When 3a was dissolved in CH2Cl2, the solvent quickly removed, and the solid recrystallized from EtOH, a stable ionic [HgCl{Te(Ph)CH2SiMe3}3]Cl·2EtOH (5a·2EtOH) was obtained. Crystals of [HgCl2{Te(CH2SiMe)2}]·2HgCl2·CH2Cl2 (6b·2HgCl2·CH2Cl2) were obtained from the CH2Cl2 solution of 3b upon prolonged standing. The complex formation was monitored by 125Te-, and 199Hg NMR spectroscopy, and the crystal structures of the complexes were determined by single crystal X-ray crystallography.  相似文献   

9.
New stable azido derivatives of divalent germanium and tin [N3-E14-OCH2CH2NMe2]2 (E14 = Ge (1), Sn (2)) have been synthesized by use of the β-dimethylaminoethoxy ligand that forms the intramolecular E14 ← N coordination bond. Their crystal structures have been determined by X-ray diffraction analysis. Compounds 1 and 2 are centrosymmetric dimers via two intermolecular dative E14 ← O interactions with essentially linear monodentate azide ligands. The dominant canonical form of the E14-azide moieties is E14-N-NN.  相似文献   

10.
The reaction of equimolar quantities of LiOCH2CH2NMe2 and E14(OCH2CH2NMe2)2 (E14=Ge, Sn) in ether yielded new ate complexes [LiE14(OCH2CH2NMe2)3]2 (E14=Ge (1), Sn (2)) with bidentate ligands. The compounds 1 and 2 are white crystalline substances which are highly soluble in THF and pyridine and very sensitive to the traces of oxygen and moisture. The structures of these compounds are studied by X-ray diffraction analysis. The ate complexes 1 and 2 are powerful nucleophiles and may be employed as ligands (neutral) in the coordination chemistry of the transition metals. The electronegative O-substituents at the divalent E14 atoms render them less oxidizable than alkyl- or aryl-substituted derivatives, and the bidentate ligands, owing to intramolecular donor-acceptor interactions, make them more thermodynamically stable compared to monodentate ligands.  相似文献   

11.
Novel half-sandwich [C9H5(SiMe3)2]ZrCl3 (3) and sandwich [C9H5(SiMe3)2](C5Me4R)ZrCl2 (R = CH3 (1), CH2CH2NMe2 (2)) complexes were prepared and characterized. The reduction of 2 by Mg in THF lead to (η5-C9H5(SiMe3)2)[η52(C,N)-C5Me4CH2CH2N(Me)CH2]ZrH (7). The structure of 7 was proved by NMR spectroscopy data. Hydrolysis of 2 resulted in the binuclear complex ([C5Me4CH2CH2NMe2]ZrCl2)2O (6). The crystal structures of 1 and 6 were established by X-ray diffraction analysis.  相似文献   

12.
Quantum chemical calculations using DFT at the B3LYP level have been carried out for the reaction of ethylene with the group-7 compounds ReO2(CH3)(CH2) (Re1), TcO2(CH3)(CH2) (Tc1) and MnO2(CH3)(CH2) (Mn1). The calculations suggest rather complex scenarios with numerous pathways, where the initial compounds Re1-Mn1 may either engage in cycloaddition reactions or numerous addition reactions with concomitant hydrogen migration. There are also energetically low-lying rearrangements of the starting compounds to isomers which may react with ethylene yielding further products. The [2 + 2]Re,C cycloaddition reaction of the starting molecule Re1 is kinetically and thermodynamically favored over the [3 + 2]C,O and [3 + 2]O,O cycloadditions. However, the reaction which leads to the most stable product takes place with initial rearrangement to the dioxohydridometallacyclopropane isomer Re1a that adds ethylene with concomitant hydrogen migration yielding Re1a-1. The latter reaction has a slightly higher barrier than the [2 + 2]Re,C cycloaddition reaction. The direct [3 + 2]C,O cycloaddition becomes more favorable than the [2 + 2]M,C reaction for the starting compounds Tc1 and Mn1 of the lighter metals technetium and manganese but the calculations predict that other reactions are kinetically and thermodynamically more favorable than the cycloadditions. The reactions with the lowest activation barriers lead after rearrangement to the ethyl substituted dioxometallacyclopropanes Tc1a-1 and Mn1a-1. The manganese compound exhibits an even more complex reaction scenario than the technetium compounds. The thermodynamically most stable final product of ethylene addition to Mn1 is the ethoxy substituted metallacyclopropane Mn1a-2 which has, however, a high activation barrier.  相似文献   

13.
The cleavage of the Se-Se bond in [2-(Me2NCH2)C6H4]2Se2 (1) was achieved by treatment with SO2Cl2 (1:1 molar ratio) or elemental halogens to yield [2-(Me2NCH2)C6H4]SeX [X = Cl (2), Br (3), I (4)]. Oxidation of 1 with SO2Cl2 (1:3 molar ratio) gave [2-(Me2NCH2)C6H4]SeCl3 (5). [2-(Me2NCH2)C6H4]SeS(S)CNR2 [R = Me (6), Et (7)] were prepared by reacting [2-(Me2NCH2)C6H4]SeBr with Na[S2CNR2] · nH2O (R = Me, n = 2; R = Et, n = 3). The reaction of 3 with K[(SPMe2)(SPPh2)N] resulted in isolation of [2-(Me2NCH2)C6H4]Se-S-PMe2N-PPh2S (8). The compounds were characterized by solution NMR spectroscopy (1H, 13C, 31P, 77Se, 2D experiments). The solid-state molecular structures of 2, 4-8 were established by single crystal X-ray diffraction. All compounds are monomeric, with the N atom of the pendant CH2NMe2 arm involved in a three-center-four-electron N?Se-X (X = halogen, S) bond. This results in a T-shaped coordination geometry for the Se(II) atom in 2, 4, 6-8. In 5, the Se(IV) atom achieves a square pyramidal coordination in the mononuclear unit. Loosely connected dimers are formed through intermolecular Se?Cl interactions (3.40 Å); the overall coordination geometry being distorted octahedral. In all compounds hydrogen bonds involving halide or sulfur atoms generate supramolecular associations in crystals.  相似文献   

14.
Three silyl-substituted titanium trichloride complexes [CpSi(CH3)2X]TiCl3 [X=Cl(1), Me(2), PhOMe(3)] were tested as catalyst precursors for the syndiospecific polymerization of styrene. The catalytic activity increased in the order 1 > 2 > 3. The highest activity was 2.42 × 107 g s-PS/mol Ti mol S h using complex 1/MAO catalytic system at molar ratio of Al/Ti=2000. The effects of variation on polymerization temperature and Al/Ti ratio on the polymerization of styrene were also studied.  相似文献   

15.
A series of novel first-generation silicon-centred tin dendrimers Si(CH2CH2SnR3)4 [R = CH3 (3), iBu (4), CCCH3 (5), C6H4CH3-4 (6), C6H4OCH3-4 (7), (CH2)4OCH2CH2OCH3 (8), CH2SiMe3 (9)] was prepared by the reaction of Si(CH2CH2SnBr3)4 (2) with the appropriate Grignard reagent or LiCH2SiMe3 in tetrahydrofuran. The new compounds were characterized by multinuclear NMR studies (1H, 13C, 119Sn), mass spectrometry (MALDI-TOF, EI) and elemental analyses. The molecular structure of Si[CH2CH2SnBr3(THF)2]2[CH2-CH2SnBr3(THF)]2 (2a) was determined by single-crystal X-ray diffraction.  相似文献   

16.
Three mixed-metal single-molecule magnets containing [Mn8Fe4O12]16+ cores are synthesized and characterized. The reaction of FeCl2·4H2O with KMnO4 and RCOOH (R = CH2Cl, CH2Br) in H2O gives [Mn8Fe4O12(O2CR)16(H2O)4] (R = CH2Cl (1), CH2Br (2)) in yields of 43% and 40%, respectively. Treatment of complex 1 with an excess of CHCl2COOH in CH2Cl2 gives [Mn8Fe4O12(O2CCHCl2)16(H2O)4]·CH2Cl2·10H2O (3·CH2Cl2·10H2O) in a yield of 83%. The X-ray structure analysis reveals that all three complexes consist of a trapped-valence dodecanuclear core comprising 4MnIII, 4FeIII, and 4MnIV ions. DC magnetic susceptibility and magnetization measurements indicate that all three complexes exhibit intramolecular antiferromagnetic interaction, resulting in an S = 4 ground state. In addition, frequency-dependent out-of-phase AC magnetic susceptibility signals at low temperature for complexes 1, 2, and 3 are indicative of their single-molecule magnetism behavior.  相似文献   

17.
Reactions of Mo(II)-tetraphosphine complex [MoCl24-P4)] (2; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2) with a series of small molecules have been investigated. Thus, treatment of 2 with alkynes RCCR′ (R = Ph, R′ = H; R = p-tolyl, R′ = H; R = Me, R′ = Ph) in benzene or toluene gave neutral mono(alkyne) complexes [MoCl2(RCCR′)(κ3-P4)] containing tridentate P4 ligand, which were converted to cationic complexes [MoCl(RCCR′)(κ4-P4)]Cl having tetradentate P4 ligand upon dissolution into CDCl3 or CD2Cl2. The latter complexes were available directly from the reactions of 2 with the alkynes in CH2Cl2. On the other hand, treatment of 2 with 1 equiv. of XyNC (Xy = 2,6-Me2C6H3) afforded a seven-coordinate mono(isocyanide) complex [MoCl2(XyNC)(κ4-P4)] (7), which reacted further with XyNC to give a cationic bis(isocyanide) complex [MoCl(XyNC)24-P4)]Cl (8). From the reaction of 2 with CO, a mono(carbonyl) complex [MoCl2(CO)(κ4-P4)] (9) was obtained as a sole isolable product. Reaction of 9 with XyNC afforded [MoCl(CO)(XyNC)(κ4-P4)]Cl (10a) having a pentagonal-bipyramidal geometry with axial CO and XyNC ligands, whereas that of 7 with CO resulted in the formation of a mixture of 10a and its isomer 10b containing axial CO and Cl ligands. Structures of 7 and 9 as well as [MoCl(XyNC)24-P4)][PF6](8′) and [MoCl(CO)(XyNC)(κ4-P4)][PF6] (10a′) derived by the anion metathesis from 8 and 10a, respectively, were determined in detail by the X-ray crystallography.  相似文献   

18.
The Sn(IV) butyl complexes [BunSnCl3 − n(NCN)] (NCN = [C6H3(CH2NMe2)2-2,6], n = 1 (1), 2 (2), 3 (3)) were prepared. Spectroscopic analysis of 1-3 by 1H and 119Sn NMR gave evidence for the presence of intramolecular N → Sn interactions in solution. The molecular structure of 1, as determined by a single-crystal X-ray diffraction study, revealed that it contained a six-coordinate Sn(IV) center with intramolecular N → Sn coordination of both ortho-amine substituents. Addition of SnCl4 to 1 resulted in the isolation of the HCl adduct [BuSnCl3(NCN+H)] (6). Reactions of 2 and 3 with SnCl4 each resulted in the HCl salt [SnCl4(NCN+H)] (8) and the corresponding butyltin chloride, Bu2SnCl2 and Bu3SnCl, respectively. The formation of HCl adducts 6 and 8 was ascribed to transfer of the NCN ligand to SnCl4 and the presence of HCl (from partial hydrolysis of the product or SnCl4 during the work up procedure). The molecular structures of 6 and 8 have been determined through single-crystal X-ray diffraction and revealed the presence of a [BuSnCl3(aryl)] or [SnCl4(aryl)] stannate anion, respectively, with in each case one coordinated ortho-amine function and one protonated amine moiety involved in N-H?Cl-Sn hydrogen bonding in both compounds (2.14 Å for 6 and 2.18 Å for 8).  相似文献   

19.
The new mixed Sb2O-donor ligands O{(CH2)2SbR2}2 (R = Ph, 1; R = Me, 2) with flexible backbones have been prepared in good yields as air-sensitive oils from reaction of NaSbR2 with 0.5 mol equivalents of O(CH2CH2Br)2 in thf solution. The As2O-donor analogues, O{(CH2)2AsR2}2 (R = Ph, 3; R = Me, 4) were obtained similarly from LiAsPh2 or NaAsMe2, respectively and O(CH2CH2Br)2, although ligand 4 appears to be considerably less stable with respect to C-O bond fission under some conditions than the other ligands. Using O(CH2CH2Cl)2 leads only to partial substitution by the SbPh2 or AsPh2 nucleophile. These ligands behave as bidentate chelating Sb2- or As2-donors in the distorted tetrahedral [M(L-L)2]BF4 (M = Cu or Ag; L-L = 1-4) on the basis of solution 1H and 63Cu NMR spectroscopic studies, mass spectrometry and microanalyses. Crystal structures of three representative examples with Cu(I) and Ag(I) confirm the distorted tetrahedral Sb4 or As4 coordination at the metal and allow comparisons of geometric parameters. The crystallographic identification of an unexpected Cu(I)-Cu(I) complex, [Cu2{Me2As(CH2)2OH}3](BF4)2, obtained as a by-product via C-O bond fission within ligand 4 is also reported. The distorted octahedral [RhCl2(L-L)2]Cl and the distorted square planar cis-[PtCl2(L-L)] (L-L = 1 or 2) are also described. The ether O atoms are not involved in coordination to the metal ion in any of the late transition metal complexes isolated.  相似文献   

20.
The C,N-(trimethylsilyliminodiphenylphosphoranyl)silylmethylmetal complexes [Fe(L)2] (3), [Co(L)2] (4), [ZrCl3(L)]·0.83CH2Cl2 (5), [Fe(L)3] (6), [Fe(L′)2] (7) and [Co(L′)2] (8) have been prepared from the lithium compound Li[CH(SiMe2R)P(Ph)2NSiMe3] [1a, (R = Me) {≡ Li(L)}; 1b, (R = NEt2) {≡ Li(L′)}] and the appropriate metal chloride (or for 7, FeCl3). From Li[N(SiMe3)C(Ph)C(H)P(Ph)2NSiMe3] [≡ Li(L″)] (2), prepared in situ from Li(L) (1a) and PhCN, and CoCl2 there was obtained bis(3-trimethylsilylimino- diphenylphosphoranyl-2-phenyl-N-trimethylsilyl-1-azaallyl-N,N)cobalt(II) (9). These crystalline complexes 3-9 were characterised by their mass spectra, microanalyses, high spin magnetic moments (not 5) and for 5 multinuclear NMR solution spectra. The X-ray structure of 3 showed it to be a pseudotetrahedral bis(chelate), the iron atom at the spiro junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号