首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 628 毫秒
1.
CdSe/CdS core/shell nanocrystals have been synthesized through a low cost and simple two-phase thermal route. The optical spectroscopy and structural characterization evidenced the core/shell structure of the CdSe/CdS nanoparticles. The X-ray diffraction patterns of CdSe and CdSe/CdS nanoparticles exhibited peak positions corresponding to those of their bulk cubic crystal structures. The X-ray photoelectron spectroscopy data confirmed the elemental composition of the CdSe/CdS nanoparticles. The absorption spectra of core/shell nanoparticles showed red shift with respect to the core CdSe nanoparticles. The photoluminescence study indicates that the intensity of the emission maximum is considerably increased in the core/shell structure as compared with the parent material, and the capping of CdS nanoparticles with CdSe material exhibit a near band-edge emission, indicating a successful passivation by removing surface defects. The high-resolution transmission microscope images of the bare and core/shell nanoparticles ascertained the monodispersed and well-defined spherical particles. The average particle sizes for CdSe and CdSe/CdS nanoparticles are 2.5 and 5 nm, respectively, thus confirming, the larger diameter of CdSe/CdS core/shell nanostructure than the core CdSe nanoparticles.  相似文献   

2.
We report comparative study of core/shell nanocrystals based on wurtzite and novel zinc-blende CdSe core. Both wurtzite and zinc-blende CdSe are coated with CdS shell or CdS/ZnS multishell under identical synthetic parameters. Crystal structure analysis finds that CdS shell is wurtzite on either wurtzite or zinc-blende CdSe cores. Morphology and photoluminescence studies exhibit that for zinc-blende CdSe based samples, the shell growth is in fine epitaxy and the obtained core/shell nanocrystals show high quantum yield both before and after surface modification process; while wurtzite CdSe based samples have irregular shape indicating inhomogeneous shell growth, and are with lower quantum yield. Furthermore, in the photoluminescence spectra exited with UV radiation, wurtzite CdSe based samples show side peaks of independently nucleated nanocrystals from the shell material; while samples with zinc-blende CdSe cores are potent in restricting these byproducts, which may attribute to the highly effective arrestment of precursor ions onto the zinc-blende CdSe surface. These features manifest that zinc-blende CdSe is more talented than conventional wurtzite CdSe in achieving core/shell nanocrystals with higher qualities.  相似文献   

3.
Surface states have been detected by surface photovoltage spectroscopy on (112̄0) CdS surfaces subjected to various treatments in UHV and studied by Auger electron spectroscopy and LEED. All surface electronic features can be related to chemical contamination or lattice nonstoichiometry. Energy level spectra of air-exposed CdS exhibit a set of discrete states due to adsorption of C, O, and Cl. Ion bombardment generates a pair of states 2.35 eV and ~0.8 eV above the valence band edge due to S interstitials and vacancies, respectively. Oxygen adsorption produces a broad continuum of states. Changes in surface atomic order show no direct effect on these electronic features. No intrinsic surface states, filled or empty, are observed by surface photovoltage spectroscopy on clean, stoichiometric (112̄0) faces of CdS.  相似文献   

4.
An efficient photoelectrode is fabricated by sequentially assembled CdS and CdSe quantum dots (QDs) onto a ZnO-nanowire film. As revealed by UV-vis absorption spectrum and scanning electron microscopy (SEM), CdS and CdSe QDs can be effectively adsorbed on ZnO-nanowire array. Electrochemical impedance spectroscopy (EIS) measured demonstrates that the electron lifetime for ZnO/CdS/CdSe (13.8 ms) is calculated longer than that of ZnO/CdS device (6.2 ms), which indicates that interface charge recombination rate is reduced by sensitizing CdSe QDs. With broader light absorption range and longer electron lifetime, a power conversion efficiency of 1.42% is achieved for ZnO based CdS/CdSe co-sensitized solar cell under the illumination of one Sun (AM 1.5G, 100 mW cm−2).  相似文献   

5.
利用飞秒泵浦探测技术对CdSe/CdS/ZnS量子点体系中的超快载流子动力学过程进行了研究. 通过选择不同波长的泵浦光分别激发样品壳层和核层,研究了载流子在壳层和核层中的超快动力学过程. 实验结果表明,载流子在CdS壳层导带中弛豫过程非常迅速(约130 fs),时间明显短于载流子在CdSe核层导带中的弛豫时间(约400 fs). 实验中也发现在CdS壳层和CdSe核层的分界面存在一定量的缺陷态.  相似文献   

6.
CdSe/CdS核/壳型纳米晶的光谱特性   总被引:7,自引:0,他引:7  
以巯基乙酸为稳定剂制备了CdSe/CdS核/壳型纳米晶。用光吸收谱(Abs)、光致发光谱(PL)及光致发光激发谱(PLE)研究了CdS壳层对CdSe纳米晶电子结构,从而对其吸收和发光性能的影响。根据PL和PLE的结果以及带边激子精细结构的计算结果,我们用尺寸很小的纳米晶中所形成的基激缔合物解释了PL光谱与吸收边之间较大的Stokes位移。  相似文献   

7.
单核/双壳结构CdSe/CdS/ZnS纳米晶的合成与发光性质   总被引:5,自引:4,他引:1       下载免费PDF全文
以巯基乙酸为稳定剂,在水溶液中合成了单核/双壳结构的CdSe/CdS/ZnS纳米晶。在内核CdSe和外壳ZnS之间的内壳CdS作为晶格匹配调节层,能够很好的改善核/壳界面处的性能,而且,最外层ZnS能够最大程度地使激子受限。用TEM和XPS对纳米晶进行了表征,并且用光致发光光谱和吸收光谱对不同核壳结构的纳米晶的发光性能进行了比较,结果表明单核/双壳结构的纳米晶具有更加优异的发光特性。  相似文献   

8.
Zone edge phonons of mixed CdS1?xSex have been studied by mean of infrared absorption and Raman scattering techniques. In the A point of the Brillouin zone, it has been shown that transverse acoustical phonons have a one mode behaviour, and that optical phonons have a two modes behaviour. CdS and CdSe zone center phonons can combined and give a LO(CdS) + LO(CdSe) Raman peak in addition to the 2LO(CdS) and 2LO(CdSe) peaks; this is not the case for phonons from the edge of the Brillouin-zone where no CdS + CdSe combination can take place.  相似文献   

9.
Results from the nonresonance spectroscopy of CdS/CdSe quantum dots (composites of CdSe–CdS nanoparticles (core–shell)) are presented. The nonlinear optical properties of CdS/CdSe QDs in PMMA are studied with fs pulses at 1053 nm using the transient lens technique. QDs generate rapidly oscillating signals with amplitude rise times of around 200 fs and decay times of around 500 fs, while pure PMMA polymer only generates an oscillating signal whose envelope coincides with its autocorrelation function.  相似文献   

10.
The electronic and optical properties of a single exciton in a CdSe/CdS/CdSe/CdS quantum dot is studied by using effective mass approximation with parabolic confinement. The Coloumbic interaction between electron and hole is included by Hartree potential. A self-consistent technique is used to calculate the energy eigenvalue and wavefunction of exciton. Based on this approximation we investigate the effect of core size, shell thickness, well width on exciton binding energy, absorption spectra, and oscillator strength. The results provide the tuning possibility of electronic and optical properties of multilayer quantum dot with layer thickness.  相似文献   

11.
A series of CdSe and CdSe/CdS quantum dots (QDs) labeled with amino acid-modified β-cyclodextrin (β-CD) was prepared by a simple ultrasonic method. These amino acid-modified β-CD-coated QDs are very soluble and stable in biological buffer. They also have high colloidal stability and strong optical emission properties that are similar to those of untreated tri-n-octylphosphine oxide (TOPO)-coated QDs. The quantum yields (QYs) of these amino acid-modified β-CD-coated CdSe and CdSe/CdS QDs in biological buffer were found to be very high. In particular, the QYs of the positively charged l-His-β-CD-coated CdSe/CdS QDs were as high as 33.5±1.8%. In addition, the fluorescence lifetime of these QDs was also very long in PBS solutions as determined by frequency domain spectroscopy. For example, the lifetime of l-His-β-CD-coated CdSe/CdS QDs was 8.6 ns. The in vitro cytotoxicity of these QDs in ECV-304, SH-SY5Y and HeLa cells was found to be lower. l-His-β-CD-coated CdSe/CdS QDs were the least cytotoxic (IC50 95.6±3.2 mg mL?1 in ECV-304 cells after 48 h). The flow cytometry results show that the positively charged amino acid led to a considerable increase in biocompatibility of QDs. This may be attributed to the presence of an amino acid-modified β-CD outer layer, which enhanced the biocompatibility.  相似文献   

12.
利用有机相法合成Nd3+掺杂CdSe纳米晶(CdSe∶Nd),通过X射线粉末衍射(XRD)、透射电镜(TEM)、紫外吸收光光谱及荧光光谱表征,证明Nd3+已经成功掺入到CdSe的晶格中。与纯CdSe纳米晶相比,CdSe∶Nd纳米晶的结构仍为立方晶型,且形貌近似球形,均匀分散,粒径约为2~4 nm。紫外吸收峰和荧光发射峰都发生红移,而且掺杂后的CdSe∶Nd纳米晶量子产率也提高,这可能是由于掺杂Nd3+引入了新的杂质能级,带隙减小。为了实现CdSe∶Nd纳米晶的可加工性和功能性,通过微乳法合成SiO2壳包覆的CdSe∶Nd纳米球(CdSe∶Nd@SiO2纳米球),CdSe∶Nd@SiO2纳米球呈均匀球形,直径约为100~115 nm,并且包壳后的CdSe∶Nd@SiO2纳米球发射峰(581 nm)与CdSe∶Nd纳米晶(598 nm)相比,发光强度提高且发射峰蓝移,蓝移约为17 nm,可能是因为SiO2壳可以减少纳米晶表面的非辐射跃迁以及改善表面缺陷导致的。  相似文献   

13.
In this paper, we have conducted a first-principles study of the structural, electronic and optical properties of (CdS)n/(CdSe)n superlattices (where n is numbers of monolayers) in the wurtzite phase (B4), using the Full-Potential Linear Muffin-Tin Orbital (FP-LMTO) method within the Local Density Approximation (LDA) technique, in order to describe the exchange correlation energy. The calculated electronic properties indicate that all (CdS)n/(CdSe)n superlattices configurations, possess a semiconductor behavior with same energy gaps. We have seen more carefully and accurately that the different superlattices configurations have no effect on the electronic properties; in particular, we did not observe any dependence between the band gap behavior and the used layers.  相似文献   

14.
The adsorption mechanism for the new compound, 7-ethynyl-2,4,9-trithia-tricyclo[3.3.1.13,7]decane (7ETTD), on ultra-thin films (∼3 nm) of CdS is investigated. Multiple reflection absorption IR spectroscopy, in conjunction with inelastic electron tunneling spectroscopy, indicates that this compound forms a self-assembled monolayer adsorbed on the CdS surface via each molecule’s trithia-adamantane anchor. Conductance-voltage data are recorded for tunnel junctions of the type Al/CdS/7ETTD/Pb over a temperature range of 4 K to room temperature and they indicate that the presence of the 7ETTD layer on the CdS dramatically modifies the conductance-voltage behavior of the junctions. These measurements show that different conduction mechanisms, including tunneling and possibly hopping, are responsible for charge transfer through the junctions depending on current, temperature, and voltage. WKB fits to the data are used to determine barrier parameters (height and width) for Al/CdS/Pb junctions with and without adsorbed 7ETTD layers on the CdS. Analysis of the fits shows that tunneling occurs at low bias (less than ∼0.2 V) but, at higher bias voltages, modification of the barrier parameters alone is insufficient to account for the observed conductance changes. A frontier orbital model is invoked which does offer a plausible explanation for these conductance changes. The model assumes bias-dependent coupling between HOMO and LUMO states of the adsorbed 7ETTD and the surface states on the CdS. The present work suggests that, because of the marked effect on the conductance of CdS ultra-thin films, 7ETTD and other similar compounds may be candidates for use in molecular electronic device fabrication.  相似文献   

15.
We synthesize colloidal CdSe/CdS core/shell quantum dots with different shell thicknesses, and there are five samples including CdSe core dots, and CdSe/CdS core/shell dots with 1-4 CdS layers. X-ray diffraction and Raman measurements indicate that the stress in CdSe core becomes stronger with the increasing shell thickness, and the optical measurements show that when the shell becomes thicker, the photoluminescence quantum yield is enhanced, and the radiative decay is also expedited. The temperature-dependent optical spectra are measured. The relation between the microstructure and the optical properties is discussed.  相似文献   

16.
The electronic structures of Cd0.88Fe0.12Se and CdSe have been investigated by photoemission yield spectroscopy (PYS) in the photon energy range from 5 to 12 eV. The () surfaces were obtained by cleavage under ultrahigh vacuum (UHV) conditions. An Fe-related emission appeared at 0.58 eV above the valence band edge. The freshly cleaved surface of Cd0.88Fe0.12Se interacted with ambient atmosphere more strongly than CdSe crystal. Leaving the sample in an UHV chamber at room temperature enabled us to identify surface related features and to observe decrease of the ionization energy Ei, energy threshold Ed and the crystal affinity χ due to change of the surface conditions. Effective density of states, derived from the experimental spectra of Cd0.88Fe0.12Se exhibits, in contrast with CdSe, a surface-related feature degenerated with the bulk valence band.  相似文献   

17.
A new solvothermal route has been developed for synthesizing the size-controlled CdSe nanocrystals with relatively narrow size distribution, and the photoluminescence (PL) quantum yields (QYs) of the nanocrystals can reach 5-10%. Then the obtained CdSe nanocrystals served as cores to prepare the core/shell CdSe/CdS nanocrystals via a two-phase thermal approach, which exhibited much higher PL QYs (up to 18-40%) than the CdSe core nanocrystals. The nanocrystal samples were characterized by ultraviolet-visible (UV-vis) absorption spectra, PL spectra, wide-angle X-ray diffraction (WAXD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).  相似文献   

18.
CdS/CdSe co-sensitizers on TiO2 films were annealed using a two-step procedure; high temperature (300 °C) annealing of TiO2/CdS quantum dots (QDs), followed by low temperature (150 °C) annealing after the deposition of CdSe QDs on the TiO2/CdS. For comparison, two types of films were prepared; CdS/CdSe-assembled TiO2 films conventionally annealed at a single temperature (150 or 300 °C) and non-annealed films. The 300 °C-annealed TiO2/CdS/CdSe showed severe coalescence of CdSe QDs, leading to the blocked pores and hindered ion transport. The QD-sensitized solar cell (QD-SSC) with the 150 °C-annealed TiO2/CdS/CdSe exhibited better overall energy conversion efficiency than that with the non-annealed TiO2/CdS/CdSe because the CdSe QDs annealed at a suitable temperature (150 °C) provided better light absorption over long wavelengths without the hindered ion transport. The QD-SSC using the two-step annealed TiO2/CdS/CdSe increased the cell efficiency further, compared to the QD-SSC with the 150 °C-annealed TiO2/CdS/CdSe. This is because the 300 °C-annealed, highly crystalline CdS in the two-step annealed TiO2/CdS/CdSe improved electron transport through CdS, leading to a significantly hindered recombination rate.  相似文献   

19.
An Al/CdSe/GaSe/C thin film transistor device was prepared by the physical vapor deposition technique at a vacuum pressure of 10−5 mbar. The x-ray diffraction measurements demonstrated the polycrystalline nature of the surface of the device. The dc current-voltage characteristics recorded for the Al/CdSe/C and Al/CdSe/GaSe/C channels displayed a resonant tunneling diode features during the forward and reverse voltage biasing, respectively. In addition, the switching current ratio of the Al/CdSe/C increased from 18.6 to 9.62×103 as a result of the GaSe deposition on the CdSe surface. Moreover, the alternating electrical signal analyses in the frequency range of 1.0 MHz to 1.8 GHz, showed some remarkable properties of negative resistance and negative capacitance spectra of the Al/CdSe/GaSe/C thin film transistors. Two distinct resonance-antiresonance phenomena in the resistance spectra and one in the capacitance spectra were observed at 0.53, 1.04 and 1.40 GHz for the Al/CdSe/C channel, respectively. The respective resonating peak positions of the resistance spectra shift to 0.38 and 0.95 GHz when GaSe is interfaced with CdSe. These features of the thin film transistors are promising for use in high quality microwave filtering circuits and also for use as ultrafast switches.  相似文献   

20.
A combination of modern surface measurement techniques such as LEED, AES and Thermal Desorption Spectroscopy were used to study the chemisorptive behavior of NO and CO on a (1010)Ru surface. The experimental evidence strongly favors a model in which NO adsorbs and rapidly dissociates into separate nitrogen and oxygen adsorbed phases, each exhibiting ordered structures: the C(2 × 4) and (2 × 1) structures at one-half and full saturation coveilage, respectively. At temperatures as low as 200°C, the nitrogen phase begins to desorb, and continuous exposure to NO in this temperature range results in an increasing oxygen coverage until the surface is saturated with oxygen and no further NO dissociation can take place. The nitrogen desorption spectrum depends strongly on coverage and exhibits several peaks which are related to structure of the adsorbed phase. There is evidence that once the surface is saturated with the dissociated NO phase further NO adsorption occurs in a molecular state. Carbon monoxide adsorbs in a molecular state and does not exhibit an ordered structure. The implications of the results with respect to the catalytic reduction of NO by H2 and CO and the N2 selectivity of Ru catalysts are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号