首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The synthesis and properties of poly(ethylene terephthalate) (PET) copolymers containing four bisester diamide structural units are reported. Two of the bisester diamides consist of three para‐substituted aromatic rings, and the other two consist of three meta‐substituted aromatic rings. The copolymers have been characterized by nuclear magnetic resonance, differential scanning calorimetry, and dilute solution viscometry. Three of the copolymers can be compression‐molded into amorphous films for oxygen barrier testing, and one of these three films can be oriented for additional barrier testing. The three amorphous films all have lower permeabilities than unoriented PET. However, this difference diminishes upon the orientation of the polymer films. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1668–1681, 2004  相似文献   

2.
Random copolymers of poly(ethylene terephthalate) (PET) and poly(ethylene 2,6-naphthalate) (PEN) were synthesized by melt condensation. In a series of thin, solvent cast films of varying PEN content, acetone diffusivity and solubility were determined at 35°C and an acetone pressure of 5.4 cm Hg. The kinetics of acetone sorption in the copolymer films are well described by a Fickian model. Both solubility and diffusivity decrease with increasing PEN content. The acetone diffusion coefficient decreases 93% from PET to PET/85PEN, a copolymer in which 85 weight percent of the dimethyl terephthalate in PET has been replace by dimethyl naphthalate 2,6-dicarboxylate. The acetone solubility coefficient in the amorphous regions of the polymer decreases by approximately a factor of two over the same composition range. The glass/rubber transition temperatures of these materials rise monotonically with increasing PEN content. Copolymers containing 20 to 80 wt % PEN are amorphous. Samples with <20% or >80% PEN contain measurable levels of crystallinity. Estimated fractional free volume in the amorphous regions of these samples is lower in the copolymers than in either of the homopolymers. Relative free volume as probed by positron annihilation lifetime spectroscopy (PALS) decreases systematically with increasing PEN content. Acetone diffusion coefficients correlate well with PALS results. Infrared spectroscopy suggests an increase in the fraction of ethylene glycol units in the trans conformation in the amorphous phase as the concentration of PEN in the copolymer increases. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2981–3000, 1998  相似文献   

3.
Poly(ethylene terephthalate) (PET), poly(ethylene terephthalate‐co‐4,4′‐bibenzoate) (PETBB55), and poly(ethylene 2,6‐naphthalate) (PEN) were cold‐drawn to achieve uniform extension without crystallization or stress whitening, and oxygen transport properties were studied at temperatures from 10 to 40 °C. Correlation of oxygen solubility and polymer specific volume made it possible to consider the oriented polyester as a one‐phase densified glass. Orientation was viewed as decreasing the amount of excess‐hole free volume and bringing the nonequilibrium polymer glass closer to the equilibrium condition. Between 10 and 40 °C, the amount of excess‐hole free volume in PET decreased as the polymer approached the glass transition temperature. In contrast, temperature changes in this range had little effect on the excess‐hole free volume in PETBB55 and PEN, which were well below their glass transition temperature. Gas diffusion was viewed as discrete jumps of the oxygen molecule between holes of excess‐free volume. The jump length was extracted from the activation energy for diffusion according to a channel‐formation model. The result agreed well with the hole spacing estimated from a simple lattice model using the hole density reported in the literature. Extending the lattice model to estimate the mean excess‐free volume hole radius from the fractional free volume resulted in good correlation with the hole radius obtained from positron annihilation lifetime spectroscopy. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 493–504, 2004  相似文献   

4.
Ternary blend fibers (TBFs), based on melt blends of poly(ethylene 2,6‐naphthalate), poly(ethylene terephthalate), and a thermotropic liquid‐crystal polymer (TLCP), were prepared by a process of melt blending and spinning to achieve high‐performance fibers. The reinforcement effect of the polymer matrix by the TLCP component, the fibrillar structure with TLCP fibrils of high aspect ratios, and the development of more ordered and perfect crystalline structures by an annealing process resulted in the improvement of the tensile strength and modulus for the TBFs. An increase in the apparent crystallite size with the spinning speed was attributed to the development of larger crystallites and more ordered crystalline structures in the annealed TBFs. The birefringence and density of the TBFs increased with increasing spinning speed, the TBFs becoming more oriented and the crystal packing becoming more enhanced. The molecular orientation was an important factor in determining the tensile strength and modulus of the TBFs. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 395–403, 2004  相似文献   

5.
The improvement of oxygen‐barrier properties of glassy polyesters by orientation was examined. Poly(ethylene terephthalate) (PET), poly(ethylene naphthalate), and a copolymer based on PET in which 55 mol % of the terephthalate was replaced with bibenzoate (PET‐BB55) were oriented by constrained uniaxial stretching. In a fairly narrow window of stretching conditions near the glass‐transition temperature, it was possible to achieve uniform extension of the polyesters without crystallization or stress whitening. The processes of orientation and densification correlated with the conformational transformation of glycol linkages from gauche to trans. Oxygen permeability, diffusivity, and solubility decreased with the amount of orientation. A linear relationship between the oxygen solubility and polymer specific volume suggested that the cold‐drawn polyester could be regarded as a one‐phase densified glass. This allowed an analysis of oxygen solubility in accordance with free‐volume concepts of gas permeability in glassy polymers. Orientation was seen as the process of decreasing the amount of excess‐hole free volume and bringing the nonequilibrium polymer glass closer to the equilibrium (zero‐solubility) condition. Cold drawing most effectively reduced the free volume of PET‐BB55. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 862–877, 2002  相似文献   

6.
The lamellar‐level morphology of an extruded poly(ethylene terephthalate) (PET)/poly(ethylene‐2,6‐naphthalate) (PEN) blend was investigated with small‐angle X‐ray scattering (SAXS). Measurements were made as a function of the annealing time in the melt and the crystallization temperature. The characteristic morphological parameters at the lamellar level were determined by correlation function analysis of the SAXS data. At a low crystallization temperature of 120 °C, the increased amorphous layer thickness was identified in the blend, indicating that some PEN was incorporated into the interlamellar regions of PET during crystallization. The blend also showed a larger lamellar thickness than pure PET. A reason for the increase in the lamellar thickness might be that the formation of thinner lamellar stacks by secondary crystallization was significantly restricted because of the increased glass‐transition temperature. At high crystallization temperatures above 200 °C, the diffusion rates of noncrystallizable components were faster than the growth rates of crystals, with most of the noncrystallizable components escaping from the lamellar stacks. As a result, the blend showed an interfibrillar or interspherulitic morphology. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 317–324, 2002  相似文献   

7.
The melt crystallization behaviors and crystalline structures of poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate), and poly(ethylene‐co‐trimethylene terephthalate) (PETT) were investigated with differential scanning calorimetry (DSC), polarized optical microscopy (POM), and X‐ray diffraction at various crystallization temperatures (Tcs). The PETT copolymers were synthesized via the polycondensation of terephthalate with ethylene glycol and trimethylene glycol (TG) in various compositions. The copolymers with 69.0 mol % or more TG or 31.0 mol % or less TG were crystallizable, but the other copolymers containing 34–56 mol % TG were amorphous. The DSC isothermal results revealed that the addition of a small amount of flexible TG (up to 21 mol %) to the PET structure slightly reduced the formation of three‐dimensional spherulites. A greater TG concentration (91–100%) in the copolyesters changed the crystal growth from two‐dimensional to three‐dimensional. The DSC heating scans after the completion of isothermal crystallization at various Tcs showed three melting endotherms for PET, PETT‐88, PETT‐84, and PETT‐79 and four melting endotherms for PETT‐9 and PETT. The presence of an additional melting endotherm could be attributed to the melting of thinner and imperfect copolyester crystallites. Analyses of the Lauritzen–Hoffman equation demonstrated that PETT‐88 had the highest values of the product of the lateral and folding surface free energies, and this suggested that the addition of small amounts of flexible trimethylene terephthalate segments to PET disturbed chain regularity, thus increasing molecular chain mobility. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4255–4271, 2004  相似文献   

8.
Interval sorption kinetics of acetone in solvent cast films of random poly(ethylene terephthalate)-co-(ethylene 2,6-naphthalate) (PET-co-PEN) are reported at 35°C and at acetone pressures ranging from 0 to 7.3 cm Hg. Polymer composition is varied systematically from 0% to 50% poly(ethylene 2,6-naphthalate). Equilibrium sorption is well described by the dual-mode sorption model. Interval sorption kinetics are described using a two-stage model that incorporates both Fickian diffusion and protracted polymer structural relaxation. The incorporation of low levels of PEN into PET significantly reduces the excess free volume associated with the glassy state and, for these interval acetone sorption experiments in ∼ 5 μm-thick films, decreases the fraction of acetone uptake controlled by penetrant-induced polymer structural relaxation. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2973–2984, 1999  相似文献   

9.
The crystallization behavior of a series of poly(ethylene‐co‐butylene naphthalate) (PEBN) random copolymers was studied. Wide‐angle X‐ray diffraction (WAXD) patterns showed that the crystallization of these copolymers could occur over the entire range of compositions. This resulted in the formation of poly(ethylene naphthalate) or poly(butylene naphthalate) crystals, depending on the composition of the copolymers. Sharp diffraction peaks were observed, except for 50/50 PEBN. Eutectic behavior was also observed. This showed isodimorphic cocrystallization of the PEBN copolymers. The variation of the enthalpy of fusion of the copolymers with the composition was estimated. The isothermal and nonisothermal crystallization kinetics were studied. The crystallization rates were found to decrease as the comonomer unit content increased. The tensile properties were also measured and were found to decrease as the butylene naphthalate content of the copolymers increased. For initially amorphous specimens, orientation was proved by WAXD patterns after drawing, but no crystalline reflections were observed. However, the fast crystallization of drawn specimens occurred when they were heated above the glass‐transition temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 843–860, 2004  相似文献   

10.
A ternary miscible blend system comprising only crystallizable aryl polyesters [poly(ethylene terephthalate), poly(trimethylene terephthalate), and poly(butylene terephthalate)] was characterized with the criteria of thermal analyses, microscopy, and X‐ray characterizations. The reported ternary miscibility (in the quenched amorphous state of blends of the three aryl polyesters) was truly physical and under the condition of no chemical transesterifications; this justified that transesterification was not a necessary condition for miscibility in polyester blends in this case. This study further proposed and tested a novel concept of a new criterion for miscibility characterization for polymer blends of only crystallizable polymers. A single composition‐dependent cold‐crystallization‐temperature (Tcc) peak in blends of only semicrystalline polymers was taken as an indication of an intimate mixing state of miscibility. The theoretical background for establishing the single composition‐dependent Tcc peak as a valid miscibility criterion for crystallizable polymer blends was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2394–2404, 2003  相似文献   

11.
Copolyesters containing rigid segments (naphthalene and terephthalene) and flexible seg-ments (aliphatic diol) structure were synthesized from DMN/DMT/EG (2,6-dimethyl naphthalate/1,4-dimethyl terephthalate/ethylene glycol) ternary monomers with various mole ratios. Copolyesters having intrinsic viscosities of 0.52–0.65 dL/g were obtained by melt polycondensation in the presence of metallic catalysts. The effect of reaction tem-perature and time on the formation of the copolyesters was investigated to obtain an op-timum condition for copolyester manufacturing. The optimum condition for PNT (poly-ethylene naphthalate terephthalate) copolyester manufacturing is the transesterification under nitrogen atmosphere for 4 h at a temperature of 185±2°C followed by polymerization under 2 mm Hg for 2 h at a temperature of 280°C. Most copolyesters have better solubilities than poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET) in various solvents. The effect of the starting mole ratio of DMN, DMT, and EG on the thermal properties of the resulted copolyesters was also investigated using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Glass transition temperatures of copolyesters were in the range of 70.7–115.2°C, and 10% weight loss in nitrogen were all above 426°C. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
The kinetics of the transesterification reaction between poly(ethylene terephthalate) (PET) and poly(ethylene 2,6‐naphthalate) (PEN) with and without the addition of a chain extender were studied with 1H NMR. Different kinetic approaches were considered, and a second‐order, reversible reaction was accepted for the PET/PEN reactive blend system. The addition of 2,2′‐bis(1,3‐oxazoline) (BOZ) promoted the transesterification reaction between PET and PEN in the molten state. The activation energy of the transesterification reaction for the PET/PEN reactive blend with BOZ (94.0 kJ/mol) was lower than that without BOZ (168.9KJ/mol). The rate constant k took an almost constant value for blend samples with different compositions mixed at 275 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2607–2614, 2001  相似文献   

13.
The improvement in the oxygen‐barrier properties of poly(ethylene terephthalate) (PET) by orientation and heat setting was examined. Orientation was carried out at 65 °C by constrained uniaxial stretching to a draw ratio of about 4. Heat setting was performed at temperatures from 90 to 160 °C with the specimen taut. Orientation decreased the permeability of PET to almost one‐third that of the unoriented, amorphous polymer because of decreases in both the diffusion coefficient and the solubility coefficient. The proposed two‐phase model for oriented PET consisted of a permeable isotropic amorphous phase (density = 1.335 g/cm3) with ethylene linkages predominately in the gauche conformation and an impermeable oriented phase (density = 1.38 g/cm3) with ethylene linkages that had transformed from the gauche conformation to the trans conformation during stretching. Chain segments in the trans conformation did not possess crystalline order; instead, they were viewed as forming an ordered amorphous phase. Crystallization by heat setting above the glass‐transition temperature did not dramatically affect the permeability. However, a decrease in the diffusion coefficient, offset by an increase in the solubility coefficient, indicated that crystallization affected the barrier properties of the permeable amorphous phase. Analysis of the barrier data, assuming a two‐phase model with variable density for both the permeable and impermeable phases, revealed that the impermeable phase density increased during crystallization, approaching a value of 1.476 g/cm3. This value is consistent with previous measurements of the density of the defective crystalline phase in PET. The density of the permeable amorphous phase decreased concurrently to about 1.325 g/cm3, indicating the appearance of additional free volume. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1679–1686, 2000  相似文献   

14.
Poly(ether ester)s consisting of poly(ethylene oxide) and poly(ethylene terephthalate) segments, EOET copolymers, could be used as shape memory polymers (SMP). Crystalline structural characters of the copolymers during the memory process were investigated by dynamic mechanical analysis, differential scanning calorimeter, wide-angle X-ray diffraction, polarizing microscopy, and recovery measurements. PEO crystals in stretched EOET copolymer preferentially oriented along fiber axis or stretch direction. During stretching, the structure of the copolymer undertake a transformation from spherulite to fiber, resulting in a crystalline morphology similar to shish-kebab, and recovery properties of stretched EOET samples were dependent on as-described crystalline structural characters that can be influenced by draw ratio. Driving forces for contraction come from the oriented chains, and only oriented or extended chains can be contributive to the recovery of deformation; these extended chains involve both crystalline and amorphous segments. The recovery process in shape memory behavior was noticed to be deorientation of oriented chains due to thermodynamic entropy effect, and was divided into three stages. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 101–112, 1999  相似文献   

15.
The high‐pressure crystallized poly(ethylene terephthalate) samples were investigated with scanning electron microscopy. The striation appearance, which is the most common feature of polymer extended‐chain crystals, was clearly observed. Poly(ethylene terephthalate) extended‐chain crystals with thickness up to 17 m were obtained at high pressure. Fibrous crystals were also formed at high pressure. The fracture behaviors, which affected the exposure of the striations, were also discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1612–1616, 2000  相似文献   

16.
Poly(ethylene terephthalate‐co‐ethylene naphthalate) (PETN)/organoclay was synthesized with the solution intercalation method. Hexadecylamine was used as an organophilic alkylamine in organoclay. Our aim was to clarify the intercalation of PETN chains to hexadecylamine–montmorillonite (C16–MMT) and to improve both the thermal stability and tensile property. We found that the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PETN/C16–MMT hybrid films. Maximum enhancement in both the ultimate tensile strength and initial modulus for the hybrids was observed in blends containing 4 wt % C16–MMT. Below a 4 wt % clay loading, the clay particles could be highly dispersed in the polymer matrix without a large agglomeration of particles. However, an agglomerated structure did form in the polymer matrix at a 6 wt % clay content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2581–2588, 2001  相似文献   

17.
Blends of poly(trimethylene terephthalate) (PTT) and poly(ethylene terephthalate) in the amorphous state were miscible in all of the blend compositions studied, as evidenced by a single, composition‐dependent glass‐transition temperature observed for each blend composition. The variation in the glass‐transition temperature with the blend composition was well predicted by the Gordon–Taylor equation, with the fitting parameter being 0.91. The cold‐crystallization (peak) temperature decreased with an increasing PTT content, whereas the melt‐crystallization (peak) temperature decreased with an increasing amount of the minor component. The subsequent melting behavior after both cold and melt crystallizations exhibited melting point depression behavior in which the observed melting temperatures decreased with an increasing amount of the minor component of the blends. During crystallization, the pure components crystallized simultaneously just to form their own crystals. The blend having 50 wt % of PTT showed the lowest apparent degree of crystallinity and the lowest tensile‐strength values. The steady shear viscosity values for the pure components and the blends decreased slightly with an increasing shear rate (within the shear rate range of 0.25–25 s?1); those of the blends were lower than those of the pure components. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 676–686, 2004  相似文献   

18.
The synthesis, microstructure, and thermal behavior of a series of poly(ethylene terephthalate) (PET) copolymers containing nitroterephthalic units are described. These novel copolyesters were synthesized by transesterification followed by melt copolycondensation of dimethyl terephthalate and dimethyl nitroterephthalate mixtures with ethylene glycol. The molar ratio of the two comonomers in the feed varied from 95/5 to 25/75. Furthermore, PET and poly(ethylene nitroterephthalate) homopolymers were synthesized with the same method and comparatively studied. Copolyester compositions were practically the same as in the feed, and weight‐average molecular weights ranged from 10,000 to 60,000. The two monomeric units were randomly distributed along the polymer chain, and the experimentally determined average sequence lengths were in accordance with ideal copolycondensation statistics. Melting temperatures and enthalpies of the copolyesters decreased with increasing content in nitroterephthalic units, and they all showed a single glass‐transition temperature superior to that of PET. They appeared to be stable up to 300 °C, and thermal degradation occurred in two well‐differentiated steps. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3761–3770, 2000  相似文献   

19.
Surface-initiated polymerizations were carried out from polymeric surfaces of commercially important polyester films, poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN). These plastic films were modified prior to polymerization by plasma oxidation, exposing surface hydroxyl groups, in order to immobilise patterned self assembled monolayers (SAMs) of trichlorosilane initiator, through the soft lithographic method of microcontact printing (μCP). Subsequently, polymerizations were initiated from the surface via controlled atom transfer radical polymerization (ATRP), under aqueous conditions, to create patterned brushes of the thermo-responsive polymer poly(N-isopropyl acrylamide) (PNIPAM). By creating patterned, rather than homogeneous brushes characterization was made possible by atomic force microscopy (AFM).  相似文献   

20.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号