首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
New soluble aramids having pendant phenoxy and phenylthio groups were prepared in high molecular weights by the polycondensation of aromatic diacids with 4-phenoxy-m-phenylenediamine and 4-phenylthio-m-phenylenediamine, respectively. Glass transition temperatures (Tg) of these aramids were in the range 195–255°C, where Tgs of phenoxy pendant aramids were higher than those of phenylthio substituted aramids. These properties were compared with those of the parent aramids derived from m-phenylenediamine and aromatic diacids. Aromatic-aliphatic polyamides were also prepared by the reaction of these three diamines with aliphatic diacids having 4–10 methylene groups and were characterized in detail.  相似文献   

2.
A new ether‐bridged aromatic dicarboxylic acid, 2′,5′‐bis(4‐carboxyphenoxy)‐p‐terphenyl ( 3 ), was synthesized by the aromatic fluoro‐displacement reaction of p‐fluorobenzonitrile with 2′,5′‐dihydroxy‐p‐terphenyl in the presence of potassium carbonate, followed by alkaline hydrolysis. A set of new aromatic polyamides containing ether and laterally attached p‐terphenyl units was synthesized by the direct phosphorylation polycondensation of diacid 3 with various aromatic diamines. The polymers were produced with high yields and moderately high inherent viscosities (0.44–0.79 dL/g). The polyamides derived from 3 and rigid diamines, such as p‐phenylenediamine and benzidine, and a structurally analogous diamine, 2′,5′‐bis(4‐aminophenoxy)‐p‐terphenyl, were semicrystalline and insoluble in organic solvents. The other polyamides were amorphous and organosoluble and could afford flexible and tough films via solution casting. These films exhibited good mechanical properties, with tensile strengths of 91–108 MPa, elongations to break of 6–17%, and initial moduli of 1.95–2.43 GPa. These polyamides showed glass‐transition temperatures between 193 and 252 °C. Most of the polymers did not show significant weight loss before 450 °C, as revealed by thermogravimetric analysis in nitrogen or in air. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4056–4062, 2004  相似文献   

3.
A new aromatic asymmetrical ether diamine, 5‐(4‐aminophenoxy)‐1‐naphthylamine, was synthesized through the nucleophilic displacement of 4‐chloronitrobenzene with the potassium phenolate of 5‐amino‐1‐naphthol in dimethylformamide, followed by hydrazine palladium‐catalyzed reduction. A series of novel aromatic polyimides containing asymmetrical diaryl ether segments were prepared from the diamine with various aromatic dianhydrides via a conventional two‐step thermal or chemical imidization method. The poly(amic acid) precursors had inherent viscosities of 1.21–1.99 dL/g, and all of them could be cast and thermally converted into transparent, flexible, and tough polyimide films. The polyimides derived from less stiff dianhydrides generally displayed higher solubility. The glass‐transition temperatures of these polyimides were recorded between 307 and 336 °C by differential scanning calorimetry, and the softening temperatures of the polymer films were 299–344 °C according to thermomechanical analysis. The polyimides showed insignificant decomposition before 520 °C in air or nitrogen. For a comparative study, two series of analogous polyimides based on symmetrical diamines such as 1,5‐diaminonaphthalene and 1,5‐bis(4‐aminophenoxy)naphthalene were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 331–341, 2005  相似文献   

4.
A new carbazole‐derived, triphenylamine (TPA)‐containing aromatic dicarboxylic acid monomer, 4,4′‐dicarboxy‐4″‐(3,6‐di‐tert‐butylcarbazol‐9‐yl)TPA, was synthesized, and it led to a series of electroactive aromatic polyamides with main‐chain TPA and pendent 3,6‐bis(tert‐butyl)carbazole units by reacting it with various aromatic diamines via the phosphorylation polyamidation technique. The polyamides were amorphous with good solubility in many organic solvents and could be solution‐cast into flexible and strong films. They showed high glass‐transition temperatures (282–335 °C) and high thermal stability (10% weight loss temperatures >480 °C). The electroactive polymer films had well‐defined and reversible redox couples with good cycle stability in acetonitrile solutions. The polymer films also exhibited fluorescent and multielectrochromic behaviors. The anodically electrochromic polyamide films had moderate coloration efficiency (~100 cm2/C) and high optical contrast ratio of transmittance change (Δ%T) up to 47% at 813 nm and 48% at 414 nm for the green coloring. After hundreds of cyclic switches, the polymer films still retained good redox and electrochromic activity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
A CF3‐containing diamine, 1,4‐bis(4‐amino‐2‐trifluromethylphenoxy) benzene ( I ), was prepared from hydroquinone and 2‐chloro‐5‐nitrobenzotrifluoride. Imide‐containing diacids ( V a–h and VI a,b ) were prepared through the condensation reaction of amino acids, aromatic diamines, and trimellitic anhydride. Then, a series of soluble fluorinated polyamides ( VII a–h ) and poly(amide imide)s ( VIII a–h and X a,b ) were synthesized from I with various aromatic diacids ( II a–h ) and imide‐containing diacids ( V a–h and VI a,b ) via direct polycondensation with triphenyl phosphate and pyridine. The polyamides and poly(amide imide)s had inherent viscosities of 1.00–1.70 and 0.79–1.34 dL/g, respectively. All the synthesized polymers showed excellent solubility in amide‐type solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, and N‐dimethylformamide and afforded transparent and tough films via solvent casting. Polymer films of VII a–h , VIII a–h , and X a,b had tensile strengths of 91–113 MPa, elongations to break of 8–40%, and initial moduli of 2.1–2.8 GPa. The glass‐transition temperatures of the polyamides and poly(amide imide)s were 254–276 and 255–292 °C, respectively, and the imide‐containing poly(amide imide)s had better thermal stability than the polyamides. The polyamides showed higher transparency and were much lighter in color than the poly(amide imide)s, and their cutoff wave numbers were below 400 nm. In comparison with isomeric IX c – h , poly(amide imide)s VIII c–h exhibited less coloring and showed lower yellowness indices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3116–3129, 2004  相似文献   

6.
New series aromatic polyamides with (carbazol‐9‐yl)triphenylamine units were synthesized from a newly synthesized diamine monomer, 4,4′‐diamino‐4″‐(3,6‐dimethoxycarbazol‐9‐yl) triphenylamine, and aromatic dicarboxylic acids via the phosphorylation polyamidation technique. These polyamides exhibit good solubility in many organic solvents and can be solution‐cast into flexible and strong films with high thermal stability. They show well‐defined and reversible redox couples during oxidative scanning, with a strong color change from colorless neutral form to yellowish green and blue oxidized forms at applied potentials scanning from 0.0 to 1.3 V. They show enhanced redox‐stability and electrochromic performance as compared to the corresponding analogs without methoxy substituents on the active sites of the carbazole unit. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 272–286  相似文献   

7.
A diamine containing heterocyclic pyridine and unsymmetrical carbazole substituents, 4‐(9‐ethyl‐3‐carbazole)‐2,6‐bis(4‐aminophenyl)pyridine ( CBAPP ), was prepared for use in the synthesis of poly(pyridine‐imide)s PI‐1–8 by direct polycondensation with dianhydrides in N,N‐dimethylacetamide (DMAc). The poly(pyridine‐imide)s derived from the diamine are highly soluble in solvents such as N‐Methyl‐2‐pyrrolidone (NMP) and DMAc at room temperature. Noncoplanar polyimide (PI‐1) showed excellent solubility, high transparency, and high‐performance mechanical properties. These polymers had relatively high glass transition temperatures and exhibited good thermal stability in both nitrogen (Td10 > 470 °C) and air (Td10 > 450 °C). The PI‐3~5 cannot form flexible and tough films due to the unsymmetrical carbazole moiety, rigid structure, and polar–polar interaction. However, through copolymerization technique these polymers (PI‐6~8) could be enhanced through the solubility, mechanical, and thermal properties. The optical properties included a strong orange fluorescence (540 nm) after protonation with acid. When the HCl concentration was increased, a new absorption band at approximately 350 nm appeared, and the intensity of the fluorescent peak at 380 nm observed in the neutral polymer solution decreased, along with the appearance of the new fluorescent peak at 540 nm. The poly(pyridine‐imide)s presented here showed only slight fluorescence quenching in the presence of methanol. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 405–412  相似文献   

8.
A novel sulfonated diamine, 3,3′‐disulfonic acid‐bis[4‐(3‐aminophenoxy)phenyl]sulfone (SA‐DADPS), was prepared from m‐aminophenol and disodium‐3,3′‐disulfonate‐4,4′‐dichlorodiphenylsulfone. The conditions necessary to synthesize and purify SA‐DADPS in high yields were investigated in some detail. This disulfonated aromatic diamine, containing ether and sulfone linkages, was used to prepare N‐methyl‐2‐pyrrolidinone‐soluble, six‐membered ring polyimide copolymers containing pendent sulfonic acid groups by a catalyzed one‐step high‐temperature polycondensation in m‐cresol. These materials showed much improved hydrolytic stability with respect to phthalimides. High‐molecular‐weight film‐forming statistical copolymers with controlled degrees of disulfonation were prepared through variations in the stoichiometric ratio of disulfonated diamine (SA‐DADPS) in its soluble triethylamine salt form to several unsulfonated diamines. Three unsulfonated diamines, bis[4‐(3‐aminophenoxy)phenyl] sulfone, 4,4′‐oxydianiline, and 1,3‐phenylenediamine, were used to prepare the copolymers. The characterization of the copolymers by 1H NMR, Fourier transform infrared, ion‐exchange capacity, and thermogravimetric analysis demonstrated that SA‐DADPS was quantitatively incorporated into the copolymers. Solution‐cast films of the sulfonated copolymers were prepared and afforded tough, ductile membranes with high glass‐transition temperatures. Methods were developed to acidify the triethylammonium salt membranes into their disulfonic acid form, this being necessary for proton conduction in a fuel cell. The synthesis and characterization of these materials are described in this article. Future articles will describe the performance of these copolymers as proton‐exchange membranes in hydrogen/air and direct methanol fuel cells. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 862–874, 2004  相似文献   

9.
A novel morpholinyl‐substituted, triphenylamine‐based diamine monomer, namely 4,4′‐diamino‐4″‐(4‐morpholinyl)triphenylamine, was synthesized and polymerized with various aromatic dicarboxylic acids via the phosphorylation polyamidation reaction leading to a series of electroactive aromatic polyamides (aramids). All aramids were readily soluble in polar organic solvents and could be solution cast into tough and flexible films with high thermal stability. Cyclic voltammograms of the aramid films on the indium‐tin oxide‐coated glass substrate exhibited a pair of reversible oxidation waves with very low onset potentials of 0.36 − 0.41 V (vs. Ag/AgCl) in acetonitrile solution. The polymer films showed reversible electrochemical oxidation accompanied by strong color changes with high coloration efficiency, high contrast ratio, and rapid switching time. The optical transmittance change (Δ%T) at 650 nm between the neutral state and the fully oxidized state is up to 90%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1289–1298  相似文献   

10.
A series of polyisophthalamides containing pendent phthalimido groups and flexible side spacers were prepared from four novel diacids and three commercial aromatic diamines. These polyamides were prepared in high yields and with high molecular weights by direct polycondensation with triphenyl phosphite and pyridine as condensing agents. The weight‐average and number‐average molecular weights, measured by gel permeation chromatography, were 70,000–137,000 and 47,000–86,000 g/mol, respectively. The novel polyamides were amorphous and readily soluble and showed glass‐transition temperatures of 150–240 °C, as measured by differential scanning calorimetry. Thermogravimetric analysis showed that the 10% weight‐loss temperatures in nitrogen were 355–430 °C, a significant improvement in thermal stability having been observed with the increase in the side‐chain length. A theoretical quantum mechanical study was successfully carried out to explain these results. Flexible and tough films, cast from polymer solutions, showed tensile strengths of 50–125 MPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3711–3724, 2002  相似文献   

11.
Fluorinated copolyimides derived from 4,4′‐oxydiphthalic anhydride (ODPA) with 4,4′‐oxydianline (ODA) and trifluoromethyl‐containing aromatic diamines have been synthesized and characterized. The trifluoromethyl‐containing diamines include 2,4‐diamino‐3′‐trifluoromethylazobenzene, 2,4‐diamino‐1‐[(4′‐trifluoromethylphenoxy) phenyl] aniline, 3,5‐diamino‐1‐[(4′‐trifluoromethylphenoxy) phenyl] benzamide, 3,5‐diamino‐1‐[(3′‐trifluoromethyl) phenyl] benzamide, 1,4‐bis(4′‐aminophenoxy)‐2‐(3′‐trifluoromethylphenyl) benzene, 3,5‐diaminobenzenetrifluoride, 4,4′‐diamino‐4″‐(p‐trifluoromethyl phenoxy) triphenylamine, and 4‐[(4′‐trifluoromethylphenoxy) phenyl]‐2,6‐bis(4″‐aminophenyl)pyridine. Strong and flexible copolyimide films, produced by casting the polyamic acid solution followed by thermal imidization, exhibited great thermal stability and high mechanical properties. The polyimides had an ultraviolet–visible absorption cutoff at 330–340 nm and pretilt angles as high as 20° for nematic liquid crystals, making them great potential candidates for advanced liquid‐crystal display applications. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1583–1593, 2002  相似文献   

12.
A novel fluorinated aromatic dianhydride, 4,4′‐[2,2,2‐trifluoro‐1‐(3‐trifluoromethyl‐phenyl)ethylidene]diphthalic anhydride (TFDA) was synthesized by coupling of 3′‐trifluoromethyl‐2,2,2‐trifluoroacetophenone with o‐xylene under the catalysis of trifluoromethanesulfonic acid, followed by oxidation of KMnO4 and dehydration. A series of fluorinated aromatic polyimides derived from the novel fluorinated aromatic dianhydride TFDA with various aromatic diamines, such as p‐phenylenediamine (p‐PDA), 4,4′‐oxydianiline (ODA), 1,4‐bis(4‐aminophenoxy)benzene (p‐APB), 1,3‐bis(4‐amino‐phenoxy)benzene (m‐APB), 4‐(4‐aminophenoxy)‐3‐trifluoromethylphenylamine (3FODA) and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene (6FAPB), were prepared by polycondensation procedure. All the fluorinated polyimides were soluble in many polar organic solvents such as NMP, DMAc, DMF, and m‐cresol, as well as some of low boiling point organic solvents such as CHCl3, THF, and acetone. Homogeneous and stable polyimide solutions with solid content as high as 35–40 wt % could be achieved, which were prepared by strong and flexible polyimide films or coatings. The polymer films have good thermal stability with the glass transition temperature of 232–322 °C, the temperature at 5% weight loss of 500–530 °C in nitrogen, and have outstanding mechanical properties with the tensile strengths of 80.5–133.2 MPa as well as elongations at breakage of 7.1–12.6%. It was also found that the polyimide films derived from TFDA and fluorinated aromatic diamines possess low dielectric constants of 2.75–3.02, a low dissipation factor in the range of 1.27–4.50 × 10?3, and low moisture absorptions <1.3%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4143–4152, 2004  相似文献   

13.
A new fluorinated diamine monomer, 2′,5′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐p‐terphenyl, was synthesized from the chloro‐displacement of 2‐chloro‐5‐nitrobenzotrifluoride with the potassium phenolate of 2,5‐diphenylhydroquinone, followed by hydrazine palladium‐catalyzed reduction. A series of trifluoromethyl‐substituted polyimides containing flexible ether linkages and laterally attached side rods were synthesized from the diamine with various aromatic dianhydrides via a conventional two‐step process. The inherent viscosities of the poly(amic acid) precursors were 0.84–1.26 dL/g. All the polyimides afforded flexible and tough films. The use of 4,4′‐oxydiphthalic anhydride and 2,2′‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride produced essentially colorless polyimide films. Most of the polyimides revealed an excellent solubility in many organic solvents. The glass‐transition temperatures of these polyimides were recorded between 254 and 299 °C by differential scanning calorimetry, and the softening temperatures of the polymer films stayed in the range of 253–300 °C according to thermomechanical analysis. The polyimides did not show significant decomposition before 500 °C in air or under nitrogen. These polyimides also showed low dielectric constants (2.83–3.34 at 1 MHz) and low moisture absorption (0.4–2.2%). For a comparative study, a series of analogous polyimides based on the nonfluorinated diamine 2′,5′‐bis(4‐aminophenoxy)‐p‐terphenyl were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1255–1271, 2004  相似文献   

14.
Thermoplastic and organic‐soluble aromatic polyamides containing both bulky triphenylethane units and flexible ether linkages were prepared directly from 1,1‐bis[4‐(4‐carboxyphenoxy)phenyl]‐1‐phenylethane ( III ) with various aromatic diamines or from 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane ( V ) with various aromatic dicarboxylic diacids via triphenyl phosphite and pyridine. These polyamides had inherent viscosities ranging from 0.71 to 1.77 dL/g. All the polymers easily were dissolved in aprotic polar solvents such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide, and some even could be dissolved in less polar solvents such as tetrahydrofuran. The flexible and tough films cast from the polymer solutions possessed tensile strengths of 89 to 104 MPa. The polyamides were thermally stable up to 460°C in air or nitrogen. Glass‐transition temperatures of these polyamides were observed in a range of 179 to 268°C via differential scanning calorimetry or thermomechanical analysis. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 247–260, 2000  相似文献   

15.
A series of novel aromatic diamines ( 2 – 4 ) containing the alkyl‐, aryl, or chloro‐substituted group of phthalazinone segments were synthesized via two synthetic steps starting from 4‐(3‐R‐4‐hydroxyphenyl)‐2,3‐phthalazinone‐1 (R = Ph, CH3, Cl). Three series of aromatic polyamides containing phthalazinone moieties were prepared through diamines 2 – 4 reacting with different aromatic dicarboxylic acids via a direct Yamazaki–Higashi phosphorylation polycondensation reaction. The resulting aromatic polyamides had inherent viscosities in the range of 0.40–0.76 dL/g. The thermal property of the polyamides was examined with DSC and thermogravimetric analysis. The glass‐transition temperatures of these polyamides ranged from 298 to 340 °C. The 10% mass‐loss temperature was above 405 °C under nitrogen. Structures of monomers 2 – 4 and the polymers were confirmed by Fourier transform infrared spectroscopy, 1H NMR, and mass spectrometry. Good solubility of these polymers in polar solvents such as N‐methylpyrrolidone, dimethylformamide, dimethylacetamide (DMAc), and m‐cresol was observed, and tough, flexible films were obtained from the polymer's DMAc solutions. The effect of the substituted group on the physical property of polymers was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2026–2030, 2004  相似文献   

16.
Two novel diamine monomers, 1,4‐bis (4‐aminophenoxy)‐2‐[(3′,5′‐ditrifluoromethyl)phenyl]benzene and 1,4‐bis [2′‐cyano‐3′(4″‐amino phenoxy)phenoxy]‐2‐[(3′,5′‐ditrifluoromethyl)phenyl] benzene, were synthesized from (3,5‐ditrifluoromethyl)phenylhydroquinone. A series of ditrifluoromethylated aromatic polyimides derived from the diamines were prepared through a typical two‐step polymerization method. These polyimides had a high thermal stability, and the temperatures at 10% weight loss were above 507 °C in nitrogen. Most of the polymers showed good solubility in anhydrated 1‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, chloroform, and tetrahydrofuran at room temperature. All the polymers formed transparent, strong, and flexible films with tensile strengths of 63.6–95.8 MPa, elongations at break of 5–10%, and Young's moduli of 2.38–2.96 GPa. The dielectric constants estimated from the average refractive indices are 2.69–2.89. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3018–3029, 2005  相似文献   

17.
We report the optical and electroluminescent properties of four novel poly(aryl ether)s ( P1 – P4 ) consisting of alternate isolated hole‐transporting [carbazole or 3,6‐bis(styryl)carbazole] and electron‐transporting [dicyano‐p‐quaterphenyl or bis(trifluoromethyl)‐p‐quaterphenyl] fluorophores. The photoluminescence (PL) spectra of the four polymeric films show maximum peaks around 407–413 nm for P1 , P2 and 442–447 nm for P3 , P4 . The PL spectra of P1 ~ P4 are dependent on the composition of the two isolated fluorophores. According to the observation of relative quantum yield in poor solvent (cyclohexane), P2 containing more bulky trifluoromethyl groups in p‐quaterphenyl segments prevented aggregate quenching processes more than P1 . Compared with P1 and P2 with carbazole segments, P3 and P4 with 3,6‐bis(styryl)carbazole segments exhibited less interchain interaction and a low threshold electric field in a single‐layer device. The p‐quaterphenyl and carbazole [or 3,6‐bis(styryl)carbazole] segments were regarded as electron‐transporting and hole‐transporting units, respectively, in the single‐layer light‐emitting diodes (Al/ P1 – P4 /ITO). In the double‐layer device (ITO/MEH‐PPV/ P2 /Al), the maximum luminance was doubled, and the threshold electric fields diminished because P2 functioned as an electron‐transporting and hole‐blocking layer. Furthermore, the voltage‐tunable multicolor emission from orange to green was observed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 333–340, 2004  相似文献   

18.
To develop colorless and soluble polyimide films, cis‐hydrogenated bisphenol A (cis‐HBPA) was successfully separated from HBPA isomers, and two novel monomers containing cis‐HBPA unit, 4,4 ′ ‐(4,4 ′ ‐isopropenylbicyclohexyloxy) diphthalic anhydride (HBPADA) and 4,4 ′ ‐(4,4 ′ ‐isopropenylbicyclohexyloxy) dianiline (f) were designed and synthesized. PI–(1 – 5) were achieved from HBPADA and five kinds of aromatic diamines and PI – 6 from HBPADA and semiaromatic diamine f via a two‐step thermal imidization. All the polyimides could afford flexible, tough, and transparent films with transparency as high as 86% at 450 nm. Surprisingly, the polyimides containing cis‐HBPA unit exhibited excellent solubility not only in polar solvents such as N, N‐dimethylacetamide, but also in low boiling solvents such as chloroform and dichloromethane. Additionally, analogues aromatic PI – 7 derived from 4,4 ′ ‐(hexafluoroisopropylidene)‐diphthalic anhydride (6FDA) and 2,2‐bis(4‐aminophenyl)hexafluoropropane (e) was obtained for comparison with PI–(1 – 6) on aspects of thermal, mechanical, soluble, optical, electrical, and morphological properties. The structure‐property relationships of PI–(1 – 7) were investigated in detail. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2115–2128  相似文献   

19.
A novel, trifluoromethyl‐substituted, bis(ether amine) monomer, 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was synthesized through the nucleophilic displacement of 2‐chloro‐5‐nitrobenzotrifluoride with 1,4‐dihydroxynaphthalene in the presence of potassium carbonate in dimethyl sulfoxide, followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new fluorine‐containing polyimides with inherent viscosities of 0.57–0.91 dL/g were prepared by reacting the diamine with six commercially available aromatic dianhydrides via a conventional, two‐step thermal or chemical imidization method. Most of the resulting polyimides were soluble in strong polar solvents such as N‐methylpyrrolidone and N,N‐dimethylacetamide (DMAc). All the polyimides afforded transparent, flexible, and strong films with good tensile properties. These polyimides exhibited glass‐transition temperatures (Tg's) (by DSC) and softening temperatures (by thermomechanical analysis) in the ranges of 252–315 and 254–301 °C, respectively. Decomposition temperatures for 5% weight loss all occurred above 500 °C in both air and nitrogen atmospheres. The dielectric constants of these polyimides ranged from 3.03 to 3.71 at 1 MHz. In addition, a series of new, fluorinated polyamides with inherent viscosities of 0.32–0.62 dL/g were prepared by the direct polycondensation reaction the diamine with various aromatic dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides were soluble in polar solvents such as DMAc and could be solution‐cast into tough and flexible films. These polyamides had Tg's between 228 and 256 °C and 10% weight‐loss temperatures above 400 °C in nitrogen or air. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2377–2394, 2004  相似文献   

20.
Condensation copolymerization reactions of carbazole 3,6‐diboronate with 4,7‐bis(5‐bromo‐2‐thienyl)‐2,1,3‐benzothiadiazole (DTBT) only produce low‐molecular‐weight donor (D)‐π‐acceptor (A) copolymers. High‐molecular‐weight copolymers for use in optoelectronic devices are necessary for achieving extended π‐conjugation and for controlling the copolymer processibility. To elucidate the cause of the persistently low molecular weight, we synthesized three 3,6‐carbazole‐based D‐A copolymers using copolymerizations of N‐9′‐heptadecanyl‐3,6‐carbazole with DTBT, N‐9′{2‐[2‐(2‐methoxy‐ethoxy)‐ethoxy]‐ethyl}‐3,‐6‐carbazole with DTBT, and N‐9′‐heptadecanyl‐3,6‐carbazole with alkyl‐substituted DTBT. We investigated several parameters for their influence on molecular copolymer weight, including the conformation of the chain during growth, the solubility of the monomers, and the dihedral angles between the donor and acceptor units. Size exclusion chromatography, UV–vis absorption spectroscopy, and computational studies revealed that the low molecular weights of 3,6‐carbazole‐based D‐A copolymers resulted from conjugation breaks and the resulting high coplanarity, which led to strong interactions between polymer chains. These interactions limited formation of high‐molecular‐weight‐copolymers during copolymerization. The strong intermolecular interactions of the 3,6‐carbazole moiety were exploited by incorporating 3,6‐carbazole units into poly[9′,9′‐dioctyl‐2,7‐flourene‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] prepared from 9′,9′‐dioctyl‐2,7‐flourene and DTBT. Interestingly, the number average molecular weight increased gradually with increasing 2,7‐fluorene monomer content but the number of conjugation breaks was a range of 6–7. The hole mobilities of the copolymers were studied for comparison purposes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号