首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This study describes the morphology and nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) in situ micro‐fiber‐reinforced blends (MRB) obtained via slit‐extrusion, hot‐stretching quenching. For comparison purposes, neat PP and PET/PP common blends are also included. Morphological observation indicated that the well‐defined microfibers are in situ generated by the slit‐extrusion, hot‐stretching quenching process. Neat iPP and PET/iPP common blends showed the normal spherulite morphology, whereas the PET/iPP microfibrillar blend had typical transcrystallites at 1 wt % PET concentration. The nonisothermal crystallization kinetics of three samples were investigated with differential scanning calorimetry (DSC). Applying the theories proposed by Jeziorny, Ozawa, and Liu to analyze the crystallization kinetics of neat PP and PET/PP common and microfibrillar blends, agreement was found between our experimental results and Liu's prediction. The increases of crystallization temperature and crystallization rate during the nonisothermal crystallization process indicated that PET in situ microfibers have significant nucleation ability for the crystallization of a PP matrix phase. The crystallization peaks in the DSC curves of the three materials examined widened and shifted to lower temperature when the cooling rate was increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 374–385, 2004  相似文献   

2.
The morphological structure and crystallization behavior of in situ poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) microparts prepared through micro‐injection molding are investigated using a polarized light microscope, differential scanning calorimeter, scanning electron microscope, and two‐dimensional wide‐angle X‐ray. Results indicate that both the shear effect and addition of PET fibers greatly influence the morphologies of the iPP matrix. Typical “skin‐core” and oriented crystalline structures (shish‐kebab) may simultaneously be observed in neat iPP and iPP/PET microparts. The presence of PET phases reveals significant nucleation ability for iPP crystallization. High concentrations of PET phases, especially long PET fibers, correspond to rapid crystallization of the iPP matrix. The occurrence of PET microfibrils decreases the content and size of β‐crystals; by contrast, the orientation degree of β‐crystals increases with increasing PET content in the microparts. This result suggests that the existence of the microfibrillar network can retain the ordered clusters and promote the development of oriented crystalline structures to some extent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In situ microfibrillar reinforced blends based on blends of isotactic polypropylene (iPP) and poly(ethylene terephthalate) (PET) were successfully prepared by a “slit extrusion-hot stretching-quenching” process. Four types of iPP with different apparent viscosity were utilized to investigate the effect of viscosity ratio on the morphology and mechanical properties of PET/iPP microfibrillar blend. The morphological observation shows that the viscosity ratio is closely associated to the size of dispersed phase droplets in the original blends, and accordingly greatly affects the microfibrillation of PET. Lower viscosity ratio is favorable to formation of smaller and more uniform dispersed phase particles, thus leading to finer microfibrils with narrower diameter distribution. Addition of a compatibilizer, poly propylene-grafted-glycidyl methacrylate (PP-g-GMA), can increase the viscosity ratio and decrease the interfacial tension between PET and iPP, which tends to decrease the size of PET phase in the unstretched blends. After stretched, the aspect ratio of PET microfibrils in the compatibilized blends is considerably reduced compared to the uncompatibilized ones. The lower viscosity ratio brought out higher mechanical properties of the microfibrillar blends. Compared to the uncompatibilized microfibrillar blends, the tensile, flexural strength and impact toughness of the compatibilized ones are all improved.  相似文献   

4.
李忠明 《高分子科学》2011,29(5):540-551
One-step reaction compatibilized microfibrillar reinforced iPP/PET blends(CMRB) were successfully prepared through a "slit extrusion-hot stretching-quenching" process.Crystallization behavior and morphology of CMRB were systematically investigated.Scanning electronic microscopy(SEM) observations showed blurry interface of compatibilized common blend(CCB).The crystallization behavior of neat iPP,CCB,microfibrillar reinforced iPP/PET blend(MRB) and CMRB was investigated by differential scanning calorimetry(DSC) and polarized optical microscopy(POM).The increase of crystallization temperature and crystallization rate during nonisothermal crystallization process indicated both PET particles and microfibrils could serve as nucleating agents and PET microfibrils exhibited higher heterogeneous nucleation ability,which were also vividly revealed by results of POM.Compared with MRB sample,CMRB sample has lower crystallization temperature due to existence of PET microfibrils with smaller aspect ratio and wider distribution.In addition, since in situ compatibilizer tends to stay in the interphase,it could also hinder the diffusion of iPP molecules to the surface of PET phase,leading to decrease of crystallization rate.Two-dimensional wide-angle X-ray diffraction(2D-WAXD) was preformed to characterize the crystalline structure of the samples by injection molding,and it was found that well-developed PET microfibrils contained in MRB sample promoted formation ofβ-phase of iPP.  相似文献   

5.
Poly(ethylene terephthalate) (PET)/high‐density polyethylene (HDPE) in situ microfibrillar reinforced blends were prepared via a slit die extrusion‐hot stretch‐quenching process. The in situ PET microfibrils contain various contents of a segmented thermoplastic elastomer, Hytrel 5526 (HT), hence having different flexibility as demonstrated by dynamic mechanical analysis. It is interesting that the simple mixing leads to nanoscale particles of the HT phase in PET phase, and the size of the HT particles is almost independent of the HT concentration, as observed from the scanning electron microscope micrographs which show that the microfibrils with different HT concentrations have almost the same diameter and smooth surfaces. The static rheological results by an advanced capillary rheometer show that the entrance pressure drop and the viscosity of the microfibrillar blends both reduced with increasing the microfibrils' flexibility. Furthermore, the data obtained by the temperature scan of the PET/HT/HDPE microfibrillar blends through a dynamic rheometer indicates that the more flexible microfibril leads to lower melt elasticity and slightly decreases the viscosities of blends, presenting a consistent conclusion about influences of the microfibrils' flexibility on the rheological behavior from the static rheometer measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1205–1216, 2007  相似文献   

6.
The effects of the addition of diblock copolymer poly(styrene‐b‐ethylene‐co‐propylene) (SEP) to isotactic polypropylene (iPP) on the morphology and mechanical properties were investigated. Phase morphologies of iPP/SEP blends up to a 70/30 weight ratio, prepared in Brabender Plasticoder, were studied with optical microscopy, scanning electron microscopy, transmission electron microscopy, and wide‐angle X‐ray diffraction. The addition of 2.5 wt % SEP caused a nucleation effect (by decreasing the crystallite and spherulite size) and randomization of the crystallites. With further SEP addition, the crystallite and spherulite size increased because of prolonged solidification and crystallization and achieved the maximum in the 80/20 iPP/SEP blend. This maximum was a result of the appearance of β spherulites and the presence of mixed α spherulites in the 80/20 iPP/SEP blend. Dispersed SEP particles were irregular and elongated clusters consisting of oval and spherical core–shell microdomains or SEP micelles. SEP clusters accommodated their shapes to interlamellar and interspherulitic regions, which enabled a well‐developed spherulitization even in the 70/30 iPP/SEP blend. The addition of SEP decreased the yield stress, elongation at yield, and Young's modulus but significantly improved the notched impact strength with respect to the strength of pure iPP at room temperature. Some theoretical models for the determination of Young's modulus of iPP/SEP blends were applied for a comparison with the experimental results. The experimental line was closest to the Takayanagi series model. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 566–580, 2001  相似文献   

7.
Cellulose acetate butyrate (CAB)/iPP (isotactic polypropylene), CAB/HDPE (high density polyethylene), CAB/PET (poly ethylene terephthalate), CAB/PTT (poly trimethylene terephthalate), CAB/PBT (poly butylenes terephthalate) and CAB/IPET-PEG (poly(ethylene terephthalate-co-isophthalate)-poly(ethylene glycol)) in situ microfibrillar and lamellar hybrid blends at a weight ratio of 80/20 were prepared by melt extrusion. Microfibrillar and lamellar hybrid morphologies of CAB/polyolefin and CAB/polyester blends under different force fields were investigated. The formation process of in situ microfibrillar and lamellar hybrid blends were analyzed and proposed.  相似文献   

8.
Summary: Isotactic poly(propylene) (iPP) transcrystallites are obtained in in situ microfibrillar polyethylene terephthalate (PET)/iPP blends during a slit extrusion‐hot stretching‐quenching process. Based on morphological information from X‐ray scattering and microscopy, three nucleation origins are proposed in microfibrillar reinforced blends under an elongational flow field: (a) the classical row nuclei model; (b) fiber nuclei; (c) nuclei induced by fiber assistant alignment. The last model provides a natural explanation for the case that transcrystallites only occur in some microfiber reinforced blends under flow rather than without the external field.

AFM image for the transcrystalline layer of the microfibrillar blend.  相似文献   


9.
The crystallization behaviors of isotactic polypropylene (iPP) and its blends with thermoelastomers have been investigated with in situ X‐ray scattering and optic microscopy. At quiescent condition, the crystallization kinetics of iPP is not affected by the presence of elastomers; while determined by the viscosity, the differences are observed on sheared samples. With a fixed shear strain, the crystallization rate increases with increasing the shear rate. The fraction of oriented lamellar crystals in blends is higher than that in pure iPP sample, while the percentage of β phase is reduced by the presence of the elastomers. On the basis of experimental results, no direct correlation among the fraction of oriented lamellae, the percentage of β phase, and growth rate can be deduced. The evolution of the fraction of oriented lamellae supports that shear field promotes nucleation rather than growth process. Shear flow induces the formation of nuclei not only with preferring orientation but also with random orientation. The total density of nuclei, which determines the crystallization kinetics, does not control the ratio between nuclei with and without preferring orientation, which determines the fraction of oriented lamellae. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1188–1198, 2006  相似文献   

10.
The crystallization and phase morphology of the injection‐molded isotactic polypropylene (iPP)/syndiotactic polypylenen (sPP) blends were studied, focusing on the difference between the skin layer and core layer. The distribution of crystallinity of PPs in the blends calculated based upon the DSC results shows an adverse situation when compared with that in the neat polymer samples. For 50/50 wt % iPP/sPP blend, the SEM results indicated that a dispersed structure in the skin layer and a cocontinuous structure in the core layer were observed. A migration phenomenon that the sPP component with lower crystallization temperature and viscosity move to the core layer, whereas the iPP component with higher crystallization temperature and viscosity move to the skin layer, occurred in the iPP/sPP blend during injection molding process. The phenomenon of low viscosity content migrate to the low shear zone may be due to the crystallization‐induced demixing based upon the significant difference of crystallization temperature in the sPP and iPP. This migration caused the composition inhomogeneity in the blend and influenced the accuracy of crystallinity calculated based upon the initial composition. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2948–2955, 2007  相似文献   

11.
对剪切场作用下的全同聚丙烯/弹性体乙烯-辛烯共聚物(iPP/PEcO)的共混物结晶行为进行研究, 结果表明, 剪切使得iPP球晶密度增加, 微晶和片晶均发生取向, 且片晶取向明显; 片晶取向度随共混物中PEcO含量的增加而增大, 而微晶取向度随PEcO含量的增加而减小; 强剪切诱导出现纤维状结晶形态. 利用同步辐射(SAXS)技术对共混物在剪切场下的等温结晶行为进行研究, 结果表明, 随结晶的进行长周期呈现先减少而后固定的趋势; 高剪切速率缩短了结晶诱导时间, 加快了共混物中结晶部分的结晶动力学过程.  相似文献   

12.
In this study, the potential of recycled poly(ethylene terepthalate) (rPET) as a well‐defined reinforcing material for the in situ microfibrillar‐reinforced composite (iMFC) was investigated in comparison with that of liquid crystalline polymer (LCP). Each dispersed phase (LCP or rPET) was melt blended with high density polyethylene (PE) by using extrusion process. The rheological behavior, morphology, and the thermal stability of LCP/PE and rPET/PE blends containing various dispersed phase contents were investigated. All blends and LCP exhibited shear thinning behavior, whereas Newtonian fluid behavior was observed for rPET. The incorporation of LCP or rPET into PE significantly improved the processability. A potential of rPET as a processing lubricant by bringing down the melt viscosity of the blend system was as good as LCP. The elongated LCP domains were clearly observed in as‐extruded strand. Although the viscosity ratio of the rPET/PE system was lower than that of the LCP/PE blend system, most rPET domains appeared as small droplets. An addition of LCP and rPET into the PE matrix improved the thermal resistance significantly in air but not in nitrogen. The obtained results suggested the high potential of rPET as a processing aid and good thermally resistant material similar to LCP. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Immiscible blends of cellulose acetate butyrate (CAB) and isotactic polypropylenes (iPPs) with different melting index were extruded through a two‐strand rod die. The extrudates were hot‐drawn at the die exit at different draw ratios by controlling the drawing speed. The morphologies of iPP fibers extracted from the as‐obtained extrudates after removal of CAB by acetone were investigated by scanning electron microscopy. The influences of draw ratio, viscosity ratio, and composition ratio of CAB/iPP on the morphology evolution of iPP phase into nanofibers in the immiscible blends were studied. It was found that the thermoplastic iPP nanofibers were formed from the elongation of iPP ellipsoids, end‐to‐end merging of elongated iPP microfibers, and the size decrease of iPP microfibers in the processes of extrusion and drawing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 921–931, 2010  相似文献   

14.
Microfibrillar composites (MFCs) were prepared using different draw/stretch ratios [viz. 2, 5, 8 and 10] from polypropylene/polyethylene terephthalate (PP/PET) blends. Scanning electron microscopy [SEM] images revealed that PET microfibrils were highly oriented after melt blending and drawing. After the conversion of drawn (stretched) blends to MFCs the PET microfibrils were found to be randomly distributed in the PP matrix. The tensile strength and modulus of the MFCs were found to be higher for the samples drawn at stretch ratios 5 and 8 on account of the long PET microfibrils they possessed. The non isothermal crystallization behaviour of the neat blend (as extruded), stretched blend and the MFC was compared. The oriented PET fibrils in the stretched blend were found to have a greater nucleating effect for the crystallization of PP than the spherical PET particles in the neat blend and randomly oriented short PET fibrils in the MFC. Dynamic rheology studies indicated the storage modulus and loss modulus of MFCs were enhanced as draw ratio increases up to an optimized level beyond which they decrease. When the draw ratio increased up to the optimized level the MFCs tended to be more viscous, especially at low frequency, whereas further increasing the draw ratio resulted in a decrease in the complex viscosity. The microfibrils of PET in the MFC were found to perturb the relaxation of molten PP matrix.  相似文献   

15.
《先进技术聚合物》2018,29(5):1469-1477
A petroleum‐based polymer, isotactic polypropylene (iPP), and a biodegradable polymer, poly(lactic acid) (PLA), were compounded and molded into parts through the micro‐injection technique. A systematic structural investigation indicated that the microfibrillation of PLA minor phase depended on the operation parameter of inter‐mixer, ie, rotor speed. The higher rotor speed, the lower viscosity ratio of the PLA/iPP pair was favorable for microfibrillation occurred during micro‐injection process. The PLA microfibrils with high aspect ratio was successfully introduced into iPP matrix, and the tensile strength and strain at break of iPP/PLA blends were simultaneously improved. This study suggests a promising method for designing special microfibrillar morphology in polymer blend by using conventional melt processing techniques.  相似文献   

16.
The morphology and crystallization behavior of poly(phenylene sulfide) (PPS) and poly(ethylene terephthalate) (PET) blends compatibilized with graft copolymers were investigated. PPS‐blend‐PET compositions were prepared in which the viscosity of the PPS phase was varied to assess the morphological implications. The dispersed‐phase particle size was influenced by the combined effects of the ratio of dispersed‐phase viscosity to continuous‐phase viscosity and reduced interfacial tension due to the addition of PPS‐graft‐PET copolymers to the blends. In the absence of graft copolymer, the finest dispersion of PET in a continuous phase of PPS was achieved when the viscosity ratio between blend components was nearly equal. As expected, PET particle sizes increased as the viscosity ratio diverged from unity. When graft copolymers were added to the blends, fine dispersions of PET were achieved despite large differences in the viscosities of PPS and PET homopolymers. The interfacial activity of the PPS‐graft‐PET copolymer appeared to be related to the molecular weight ratio of the PPS homopolymer to the PPS segment of the graft copolymer (MH/MA). With increasing solubilization of the PPS graft copolymer segment by the PPS homopolymer, the particle size of the PET dispersed phase decreased. In crystallization studies, the presence of the PPS phase increased the crystallization temperature of PET. The magnitude of the increase in the PET crystallization temperature coincided with the viscosity ratio and extent of the PPS homopolymer solubilization in the graft copolymer. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 599–610, 2000  相似文献   

17.
Summary: Shear‐induced crystallization in a blend of isotactic poly(propylene) and poly(ethylene‐co‐octene) (iPP/PEOc) has been investigated by means of in‐situ optical microscopy and a shear hot stage under various thermal and shear histories. Cylindrites are observed after shear in the phase‐separated iPP/PEOc blends for the first time. The nuclei (shish) come from the orientation of the entangled network chains, and the relationship between the shear rate and the network relaxation time of the oriented iPP chains is a very important factor that dominates the formation of the cylindrites after liquid‐liquid phase separation. The cylindrites can grow through phase‐separated domains with proper shear rate and shear time. In addition, the number of spherulites increases with shear rate, which is consistent with the notion of fluctuation‐induced nucleation/crystallization.

Phase‐contrast optical micrograph of the iPP/PEOc = 50/50 (wt.‐%) sample sheared during cooling with shear rate of 10 s−1 and isothermally crystallized at 140 °C for 142 s after isothermal annealing at 170 °C for 420 min. The shear time is 180 s.  相似文献   


18.
Liquid crystalline polymer–poly(butylene terephthalate) (LCP/PBT) blends were prepared by melt mixing. The LCP employed was a thermotropic copolyesteramide based on 30 mol % of p‐amino benzoic acid (ABA) and 70 mol % of poly(ethylene terephthalate) (PET). The thermal, dynamic mechanical and rheological properties, morphology, and crystal structure of LCP/PBT blends were studied. The results showed that the semiflexible ABA30/PET LCP is miscible in the melt state with PBT, and they are partial miscible in the solid state. Differential scanning calorimetric measurements showed that the introduction of the semiflexible LCP into LCP/PBT blends retards the crystallization rate of PBT. However, the LCP dispersed phase acted as the sites for the nucleation of spherulites and enhance the degree of crystallinity of PBT. Hot‐stage optical microscopy examination revealed that the LCP microfibers with random orientation are dispersed in the PBT matrix of compression molded LCP/PBT blends. Under the application of a shearing force, the LCP domains in the PBT matrix tended to deform into microfibers, and to orient themselves along the flow direction. The formation of microfibers resulted in an increase of the storage modulus. The torque measurements indicated that the melting viscosity of the LCP/PBT blends is much lower than that of the pure PBT. Finally, the wide‐angle X‐ray diffraction patterns indicated that PBT shows no structural change with the incorporation of LCP, but the apparent crystal sizes of several diffraction planes change significantly. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 403–414, 2000  相似文献   

19.
Blends of isotactic polypropylene and polyamide‐6/clay nanocomposites (iPP/NPA6) were prepared with an internal batch mixer. A high content of the β‐crystalline form of isotactic polypropylene (β‐iPP) was observed in the injection‐molded samples of the iPP/NPA6 blends, whereas the content of β‐iPP in the iPP/PA6 blends and the iPP/clay composite was low and similar to that of neat iPP. Quiescent melt crystallization was studied by means of wide‐angle X‐ray diffraction, differential scanning calorimetry, and polarized optical microscopy. We found that the significant β‐iPP is not formed during quiescent melt crystallization regardless of whether the sample used was the iPP/NPA6 blend or an NPA6 fiber/iPP composite. Further characterization of the injection‐molded iPP/NPA6 revealed a shear‐induced skin–core distribution of β‐iPP and the formation of β‐iPP in the iPP/NPA6 blends is related to the shear flow field during cavity‐filling. In the presence of clay, the deformation ability of the NPA6 domain is decreased, as evidenced by rheological and morphological studies. It is reasonable that the enhanced relative shear, caused by low deformability of the NPA6 domain in the iPP matrix, is responsible for β‐iPP formation in the iPP/NPA6 blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3428–3438, 2004  相似文献   

20.
Compounds of isotactic polypropylene (iPP) and β‐nucleating agent were used to investigate the relationship between the development of β phase and molecular weight in iPP under quiescent crystallization conditions by using wide angle X‐ray diffraction and differential scanning calorimetry techniques. In all cases, the dependency of the formation of β phase in iPP on molecular weight of iPP at a defined crystallization temperature range was found. The iPP with high molecular weight possessed a wide range of crystallization temperature in inducing rich β phase. However, poor or even no β phase was obtained for the samples with low molecular weight in the same range. In addition, an upper critical crystallization temperature of producing dominant β phase was found at 125 °C. Beyond this temperature, a phenomenon of prevailing α phase became obvious. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1301–1308  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号