首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Xiang J  Xia X  Jiang Y  Leung AW  Wang X  Xu J  Wang P  Yu H  Bai D  Xu C 《Ultrasonics》2011,51(3):390-395

Objective

The present study aims to investigate apoptosis of ovarian cancer cells induced by methylene blue (MB)-mediated sonodynamic therapy (SDT).

Methods

The MB concentration was kept constant at 100 μM and ovarian cancer HO-8910 cells were exposed to ultrasound therapy for 5 s with an intensity of 0.46 W/cm2. The cytotoxicity was investigated 24 h after MB-mediated sonodynamic action. Apoptosis was analyzed using a flow cytometer with Annexin V-FITC and propidium iodine (PI) staining as well as fluorescence microscopy with Hoechst 33258 staining. Intracellular reactive oxygen species (ROS) level was measured by flow cytometer with 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) staining.

Results

The cytotoxicity of MB-mediated SDT on HO-8910 cells after MB-mediated SDT was significantly higher than those of other treatments including ultrasound alone, MB alone and sham treatment. Flow cytometric analysis showed a significant increase in the early and late apoptotic cell populations by MB-mediated SDT of HO-8910 cells. Nuclear condensation and increased ROS levels were also found in HO-8910 cells treated by MB-mediated SDT.

Conclusions

Our findings demonstrated that MB-mediated sonodynamic action significantly induced apoptosis of HO-8910 cells and an increase in intracellular ROS level. This indicates that apoptosis is an important mechanism of cell death induced by MB-mediated SDT. Thus, MB-mediated SDT might be a potential therapeutic strategy for combating ovarian cancer.  相似文献   

2.
Wang X  Leung AW  Jiang Y  Yu H  Li X  Xu C 《Ultrasonics》2012,52(4):543-546

Objective

The present study aims to investigate apoptosis of hepatocellular carcinoma cells induced by hypocrellin B-mediated sonodynamic action.

Methods

The hypocrellin B concentration was kept constant at 2.5 μM and cells from the hepatocellular carcinoma HepG2 cell line were exposed to ultrasound with an intensity of 0.46 W/cm2 for 8 s. Cell cytotoxicity was quantified using an MTT assay 24 h after sonodynamic therapy (SDT) of hypocrellin B. Apoptosis was investigated using a flow cytometry with Annexin V-FITC and propidium iodine staining. Intracellular reactive oxygen species (ROS) levels were detected using a flow cytometry with 2,7-dichlorodihydrofluorecein diacetate (DCFH-DA) staining.

Results

The cytotoxicity of hypocrellin B-mediated sonodynamic action on HepG2 cells was significantly higher than those of other treatments including ultrasound alone, hypocrellin B alone and sham treatment. Flow cytometry showed that hypocrellin B-induced sonodynamic action markedly enhanced the apoptotic rate of HepG2 cells. Increased ROS was observed in HepG2 cells after being treated with hypocrellin B-mediated sonodynamic action.

Conclusions

Our data demonstrated that hypocrellin B-mediated sonodynamic action remarkably induced apoptosis of HepG2 cells, suggesting that apoptosis is an important mechanism of cell death induced by hypocrellin B-mediated SDT.  相似文献   

3.

Objectives

Curcumin, a natural pigment from the traditional Chinese herb, has shown promise as an efficient enhancer of ultrasound. The present study aims to investigate ultrasound-induced cellular destruction of nasopharyngeal carcinoma cells in the presence of curcumin in vitro.

Methods

Nasopharyngeal carcinoma cell line CNE2 cells were incubated by 10 μm curcumin and then were treated by ultrasound for 8 s at the intensity of 0.46 W/cm2. Cytotoxicity was evaluated using MTT assay and light microscopy. Mitochondrial damage was analyzed using a confocal laser scanning microcopy with Rhodamine 123 and ultrastructural changes were observed using a transmission electron microscopy (TEM).

Results

MTT assay showed that cytotoxicity induced by ultrasound treatment alone and curcumin treatment alone was 18.16 ± 2.37% and 24.93 ± 8.30%, respectively. The cytotoxicity induced by the combined treatment of ultrasound and curcumin significantly increased up to 86.67 ± 7.78%. TEM showed that microvillin disappearance, membrane blebbing, chromatin condensation, swollen mitochondria, and mitochondrial myelin-like body were observed in the cells treated by ultrasound and curcumin together. The significant collapse of mitochondrial membrane potential (MMP) was markedly observed in the CNE2 cells after the combined treatment of curcumin and ultrasound.

Conclusions

Our findings demonstrated that ultrasound sonication in the presence of curcumin significantly killed the CNE2 cells and induced ultrastructural damage and the dysfunction of mitochondria, suggesting that ultrasound treatment remarkably induced cellular destruction of nasopharyngeal carcinoma cells in the presence of curcumin.  相似文献   

4.
Wang X  Wang Y  Wang P  Cheng X  Liu Q 《Ultrasonics》2011,51(5):539-546

Objective

The purpose of this study was to evaluate sonodynamically induced anti-tumor effect of protoporphyrin IX (PPIX) in mice bearing hepatoma-22 (H-22) solid tumors, and the possible in vivo cell damage mechanism was also investigated.

Methods

The pharmacokinetics of PPIX was analyzed in plasma, skin, muscle and tumor of H-22 bearing mice. Tumors were irradiated with ultrasound (1.43 MHz, ISATA 3 W/cm2, 3 min) for three times at 8, 12 and 24 h after 5.0 mg/kg PPIX administration, respectively. The anti-tumor effects of sonodynamic therapy (SDT) were estimated by the tumor inhibition ratio (volume and weight). The bio-effects of SDT were evaluated by hematoxylin and eosin (H&E) staining, transmission electron microscope (TEM) observation, lipid peroxidation (LPO) measurement and anti-oxidative enzymes (glutathione peroxidase (GSH-PX), catalase (CAT) and superoxide dismutase (SOD)) assay.

Results

A significant anti-tumor effect was obtained by PPIX-mediated sonodynamic therapy (PPIX-SDT). At the fifteenth day after PPIX-SDT, the tumor growth and tumor weight inhibition ratios were 53.84% and 45.86%, respectively. In addition, the structure of tumor tissues and the anti-oxidative enzymes were obviously destroyed after SDT treatment.

Conclusions

A biochemical mechanism was involved in PPIX-SDT in vivo, and the free radicals produced by the synergistic treatment destroying the anti-oxidative system of tumor cells in vivo may play an important role in this action. Also, the thermal effect could not be excluded in inducing damage of cellular structures, like membrane disruption and chromatin condensation under current evaluation in this paper.  相似文献   

5.
In order to have consistent and repeatable effects of sonodynamic therapy (SDT) on various cancer cells or tissue lesions we should be able to control a delivered ultrasound energy and thermal effects induced. The objective of this study was to investigate viability of rat C6 glioma cells in vitro depending on the intensity of ultrasound in the region of cells and to determine the exposure time inducing temperature rise above 43 °C, which is known to be toxic for cells. For measurements a planar piezoelectric transducer with a diameter of 20 mm and a resonance frequency of 1.06 MHz was used. The transducer generated tone bursts with 94 μs duration, 0.4 duty-cycle and initial intensity ISATA (spatial averaged, temporal averaged) varied from 0.33 W/cm2 to 8 W/cm2 (average acoustic power varied from 1 W to 24 W). The rat C6 glioma cells were cultured on a bottom of wells in 12-well plates, incubated for 24 h and then exposed to ultrasound with measured acoustic properties, inducing or causing no thermal effects leading to cell death. Cell viability rate was determined by MTT assay (a standard colorimetric assay for assessing cell viability) as the ratio of the optical densities of the group treated by ultrasound to the control group. Structural cellular changes and apoptosis estimation were observed under a microscope. Quantitative analysis of the obtained results allowed to determine the maximal exposure time that does not lead to the thermal effects above 43 °C in the region of cells for each initial intensity of the tone bursts used as well as the threshold intensity causing cell death after 3 min exposure to ultrasound due to thermal effects. The averaged threshold intensity was found to be about 5.7 W/cm2.  相似文献   

6.
Sonodynamic therapy (SDT) has been shown to mediate apoptosis in many experimental systems, but the detailed mechanism of this process is unclear. In this study, we aim to investigate the potential participation of the mitochondria-caspase signaling pathway in the SDT-induced apoptosis in isolated sarcoma 180 (S180) cells. The cell suspension was treated with 1.75 MHz continuous ultrasound (US) at an acoustic intensity (ISATA) of 1.4 W for 3 min in the absence or presence of 20 μg/ml hematoporphyrin (Hp). At different times after the SDT-treatment, the apoptotic cells were identified under a scanning electron microscope, and the apoptosis index (AI) was determined by flow cytometry. In addition, the mitochondrial membrane potential, permeabilization of the inner mitochondrial membrane, and translocation of apoptosis-related proteins were assessed by confocal microscopy. Simultaneously, the activation of some special apoptosis-associated proteins [caspase-9, caspase-3, polypeptide poly (ADP-ribose) polymerase (PARP), and Bax] was evaluated by western blotting. Our results indicate that the ultrasonically activated Hp can cause obvious cell apoptosis (AI, 57.66%) at 3 h after treatment, and this effect can be significantly reduced by caspase-9 inhibitor (AI, 20.76%) and the oxygen scavenger NaN3 (20.11%). However, the apoptosis induced by ultrasound alone was relatively lower (28.33%) and was not reduced by NaN3. Further, SDT caused an 82.1% reduction in the mitochondrial membrane potential and a 70.7% reduction in the permeabilization of the inner mitochondrial membrane immediately after treatment, and these two effects were obviously prevented by NaN3. In comparison with the control cells, the SDT-treated cells showed obvious cytochrome-c and Bax translocations, caspase activation, Bax expression, and PARP cleavage at 1 h after SDT-treatment. However, in the cells treated with ultrasound alone, these phenomena partially and weakly occurred 3 h after exposure. These results primarily showed that the mitochondria-caspase signaling pathway in S180 cells was activated in the US- and SDT-induced apoptosis. Moreover, Hp significantly accelerates the process of apoptosis and enhances the cytotoxic effect of ultrasonic treatment. Singlet oxygen may be responsible for the mitochondrial damage and the activation of the apoptotic signaling pathway.  相似文献   

7.

Objectives

The present study aims to investigate apoptosis of human leukemia K562 cells induced by protoporphyrin IX (PpIX)-mediated sonodynamic therapy (PpIX-SDT).

Methods

The uptakes of intracellular PpIX in K562 cells were detected by flow cytometry. The sub-cellular localization of PpIX was imaged by confocal microscope. The cytotoxic effect of PpIX-SDT was assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenylter-trazolium bromide tetrazolium) assay. Apoptosis was evaluated by chromatin condensation with DAPI (4′-6-diamidino-2-phenylindole) staining, decrease of mitochondria membrane potential (MMP), re-distribution of Bax, and the expression changes of the key apoptosis-associated protein (Caspase-3 and polypeptide poly (ADP-robose) polymerase). The possible mechanism of SDT-induced apoptosis was investigated by detecting by intracellular ROS (reactive oxygen species) generation and effect of ROS scavenger-NAC (N-acetylcysteine) on SDT induced apoptosis.

Results

The intracellular PpIX increased quickly within 2 h after PpIX administration and PpIX mainly localized in the mitochondria. Compared with PpIX alone and ultrasound alone groups, the synergistic cytotoxicity of PpIX plus ultrasound was significantly boosted. In addition, the ultrasound induced some extent of chromatin condensation and MMP loss was greatly enhanced by the presence of 2 μg/ml PpIX, where PpIX alone treatment showed no or only slight effect. Time-dependent Bax translocation, caspase-3 activation and PARP cleavage were detected in SDT treatment groups. Besides, intracellular ROS production was significantly enhanced after SDT, and the general ROS scavenger NAC could obviously alleviate the SDT-caused cell viability loss, MMP loss, Bax redistribution and nuclear changes.

Conclusions

These results indicated that PpIX-mediated sonodynamic action could induce apoptosis on K562 cells, and the intracellular ROS was involved in the PpIX-SDT induced apoptosis.  相似文献   

8.

Background

Ultrasound therapy is a new modality in the control of malignant cancers. The aim of the present study was to investigate the effect of 5-aminolaevulinic acid on the ultrasonic killing action in the cancer cells.

Materials/methods

The K562 cells as a cancer cell model were subjected to investigate the effect of 5-aminolaevulinic acid (5-ALA) on the ultrasonic killing action, in which the 5-ALA concentration was 2 mM and the ultrasound exposure was 15 s at the intensity of 0.46 W/cm2 and the frequency of 1.7 MHz. Cytotoxicity was investigated 24 h after ultrasound exposure using the trypan blue exclusion test. Ultrastructural cell morphology and mitochondrial changes were observed using transmission electron microscopy (TEM). Mitochondrial membrane potential (ΔΨm) was evaluated using Rhodamine 123 assay.

Results

The death rates of the K562 cells in the controls including sham radiation and 5-ALA treatment alone were 1.81 ± 0.13%, 1.27 ± 0.20%, respectively. Those in ultrasound radiation alone and 5-ALA-ultrasound treatment were 12.61 ± 2.63%, 46.87 ± 4.09%, respectively. There were significant differences between 5-ALA-ultrasound treatment, ultrasound radiation alone and the controls (P < 0.05). TEM showed that the mitochondria expanding and some vacuoles were found in the ultrasound-treated cells. After the treatment of ultrasound and 5-ALA together some cells presented typical characteristics of apoptotic cells, such as nuclear condensation and crescent formation. Mitochondria of the cells were damaged more seriously than those treated by ultrasound alone, there were obvious swollen mitochondria and mitochondria in which cristae were almost perfectly disappeared, and more vacuolar mitochondria were founded. Mitochondrial membrane potential (ΔΨm) was more significantly collapsed when the K562 cells were exposed to 2 mM 5-ALA for 4 h and then 0.46 W/cm2 irradiation of ultrasound than ultrasound radiation alone.

Conclusion

5-ALA pretreatment significantly enhanced the cytotoxicity of ultrasound radiation in K562 cells. The damage of mitochondria structure and function might be an important cause of cell death in K562 cells induced by the treatment of ultrasound radiation and 5-ALA together.  相似文献   

9.
Tang W  Fan W  Liu Q  Zhang J  Qin X 《Ultrasonics》2011,51(7):777-785
p53 plays a pivotal role in apoptosis. In addition, p53 is currently extensively investigated as a promising strategy for highly specific anticancer therapy in chemotherapeutics and photodynamic therapy. However, the role of p53 in the response of tumor cells to sonodynamic therapy treatment is still unclear. In this study, we aim to investigate the activation of p53 in sonodynamic therapy. Three murine tumor models with distinct aggressiveness (S180, H-22 and EAC) were treated with 1.75 MHz continuous ultrasound at an acoustic intensity (ISATA) of 1.4 W for 3 min in the presence of 20 μg/ml hematoporphyrin. The DNA fragment and nuclear damage were observed by TUNEL and single cell gel electrophoresis. Western blotting and RT-PCR were used to analyze the expression of p53, PUMA, Bax and Fas. Then we checked the translocation of p53 by confocal microscopy. DNA sequencing was used to determine the status of p53 gene in three tumor cell lines. Our results indicated that the level of p53 protein and mRNA increased significantly, and p53 activated the expression of its downstream pro-apoptosis gene PUMA, Bax and Fas in the S180 and H-22 cells. Meanwhile, p53 protein translocated onto mitochondria. In the EAC cells, expression and translocation of p53 was not found; the level of PUMA, Bax and Fas remained unaltered. The S180 cells showed most serious DNA fragment and nuclear damage with 77.43% TDNA; H-22 cells in the middle with 58.85% TDNA; whereas EAC cells appeared less nuclear material lost with just 15.82% TDNA. The results of DNA sequencing showed that the sequences of exons 5-8 of the p53 gene of S180, H-22 and EAC cells were the same with the sequences of wild-type p53 provided by NCBI. These results primarily demonstrated that: (1) p53 was activated to promote SDT-induced apoptosis through extrinsic and intrinsic signaling pathways in the S180 and H-22 cells; (2) cellular responses of different cells to SDT were distinct, the aggressive S180 cells were much more sensitive than H-22, whereas EAC cells were relatively less sensitive. The discrepancy among the cell lines may be due to different activation time of p53 protein.  相似文献   

10.
Our previous study suggested new sonodynamic therapy for cancer cells based on the delivery of titanium dioxide (TiO2) nanoparticles (NPs) modified with a protein specifically recognizing target cells and subsequent generation of hydroxyl radicals from TiO2 NPs activated by external ultrasound irradiation (called TiO2/US treatment). The present study first examined the uptake behavior of TiO2 NPs modified with pre-S1/S2 (model protein-recognizing hepatocytes) by HepG2 cells for 24 h. It took 6 h for sufficient uptake of the TiO2 NPs by the cells. Next, the effect of the TiO2/US treatment on HepG2 cell growth was examined for 96 h after the 1 MHz ultrasound was irradiated (0.1 W/cm2, 30 s) to the cells which incorporated the TiO2 NPs. Apoptosis was observed at 6 h after the TiO2/US treatment. Although no apparent cell-injury was observed until 24 h after the treatment, the viable cell concentration had deteriorated to 46% of the control at 96 h. Finally, the TiO2/US treatment was applied to a mouse xenograft model. The pre-S1/S2-immobilized TiO2 (0.1 mg) was directly injected into tumors, followed by 1 MHz ultrasound irradiation at 1.0 W/cm2 for 60 s. As a result of the treatment repeated five times within 13 days, tumor growth could be hampered up to 28 days compared with the control conditions.  相似文献   

11.
Li Y  Wang P  Zhao P  Zhu S  Wang X  Liu Q 《Ultrasonics》2012,52(4):490-496
Sonodynamic therapy (SDT) is a promising modality for cancer treatment, involving the synergistic interaction of ultrasound and some chemical compounds termed as sono-sensitizers. It has been found that SDT can lead to apoptotic cell death because of the induction of direct sonochemical and subsequent redox reactions. However, the detailed mechanisms are not clear. This study was to identify the cytotoxic effects of ultrasound-activated protoporphyrin IX (PpIX) on MDA-MB-231 cells. The fluorescence microscope was used to detect the sub-cellular localization of PpIX. Several distinct sonochemical effects were found after SDT treatment, including the decrease of cell viability, generation of intracellular ROS, the loss of mitochondrial membrane potential. The activation of some special apoptosis-associated proteins [Caspase-9, Caspase-3 and polypeptide poly (ADP-robose) polymerase] was evaluated by western blotting. The results show that PpIX mediated SDT (PpIX-SDT) treatment could obviously inhibit the proliferation of MDA-MB-231 cells, and which was significantly reduced by the pan-Caspase inhibitor z-VAD-fmk and the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC). Further, SDT induced a conspicuous loss of mitochondrial membrane potential (MMP) and a mass of ROS accumulation in MDA-MB-231 cells at 1 h post-treatment and the SDT-treated cells showed obvious Caspase-3 and Caspase-9 activation, and PARP cleavage at 6 h after treatment. And, the general apoptosis marker-Caspase-3 activation-was also greatly relieved by NAC. These findings primarily indicate a Caspase-depended apoptosis could be induced by PpIX-SDT in MDA-MB-231 cells, and the intracellular ROS was involved during the apoptotic process.  相似文献   

12.
Tang W  Liu Q  Wang X  Mi N  Wang P  Zhang J 《Ultrasonics》2008,48(1):66-73
Sonodynamic therapy (SDT) is a novel tumor therapy method. We investigated membrane fluidity, activity of the enzymes and membrane morphology in vitro post hematoporphyrin-SDT treatment. Furthermore, the potential mechanisms behind the changes in membrane fluidity and enzymic activity were discussed. Tumor cells were exposed to ultrasound at 1.75 MHz for up to 3 min in the presence and absence of hematoporphyrin. Fluorescence polarization, contents of Malonaldehyde, and levels of free fatty acid were assessed. Activity of enzymes was checked by the plumbic nitrate detection method. For the morphologic study, a scanning electron microscope was used to observe the cellular surface. Ultrasonically induced cell damage increased in the presence of HPD (from 15% to 24%). Compared with ultrasound treatment alone, the fluidity decreased from 5.037 to 3.908, malonaldehyde content and free fatty acid level increased from 0.743 nmol/mL to 0.979 nmol/mL and from 237.180 μmol/L to 730.769 μmol/L, respectively, post ultrasound combined with HPD treatment. Inactivity of adenylate cyclase and guanylate cyclase and significant deformation of the cellular surface were also observed post SDT treatment. Our results suggested that alterations in membrane modality and lipid composition played important roles in SDT-mediated inhibition of tumor growth, even inducing tumor cell death, which might be attributed to a sono-chemical activation mechanism.  相似文献   

13.
Zn-doped nickel ferrite nanoparticles (Zn0.6Ni0.4Fe2O4) have been prepared via a surfactant, polyethylene glycol assisted hydrothermal route. X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and vibrating scanning magnetometry (VSM) were used for the structural, morphological, and magnetic characterizations of the product, respectively. TEM analysis revealed that the nanoparticles have a narrow size distribution, with average particle size of 15±1 nm, which agrees well with the XRD based estimate of 14±2 nm. The absence of saturation and remanent magnetization, and coercivity in the high temperature region of the M-H curve and non-zero magnetic moments indicate superparamagnetism of the nanoparticles with a canted spin structure. The appearance of a peak on the temperature-dependent zero-field cooling magnetization curve at ∼190 K indicates the blocking temperature of the sample.  相似文献   

14.
Pan Wang 《Ultrasonics》2010,50(6):634-638
The cytotoxic effect of protoporphyrin IX disodium salt (PPIX) on isolated Ehrlich ascetic tumor (EAT) cells induced by ultrasound exposure was investigated. Tumor cells suspended in air-saturated phosphate buffer solution (PBS, pH 7.2) were exposed to ultrasound at 2.2 MHz for up to 60 s in the presence and absence of PPIX. The viability of cells was determined by a trypan blue exclusion test. The morphological changes of cells in SDT were observed by scanning electron microscope (SEM). And the sub-cellular localization of PPIX in EAT cells was detected by confocal laser scanning microscopy (CLSM). The ultrasonically-induced cell damage increased as PPIX concentration increased, while no cell damage was observed with PPIX alone. CLSM observation revealed that the fluorescence of PPIX and rhodamine 123 (mitochondrial probe) overlapped very well in the cytoplasm. The results indicate that PPIX could enhance the ultrasonically-induced cell damage and mitochondria may play an important role during sonodynamically induced cytotoxicity.  相似文献   

15.
In the present study, a novel LED source was applied for activating pyropheophorbids-a methyl ester (MPPa) in cisplatin-resistant ovarian cell line COC1/DDP cells. MPPa concentration was 2 μM and light energy from 0.125–8 J/cm2. Cytotoxicity was investigated 24 h using MTT reduction assay and light microscopy after treatment. Cellular ultrastructure was observed using transmission electron microscopy (TEM) and nuclear chromatin by fluorescent microscope with Hoechst33258 staining. MTT reduction assay showed that the cytotoxicity of LED-activated MPPa in the COC1/DDP cells increased along with the light dose of LED source and LED-activated MPPa resulted in light-dependent cytotoxicity. The observations from light microscopy reinforced the above results. TEM showed that necrotic cells with the disruption of karyotheca, karyorrhexis, and karyolysis of nucleus and apoptotic cells, especially the apoptotic body, can be seen post LED-activated MPPa. Hoechst33258 staining showed that condensation of chromatin and nuclear fragmentations could be found in many treated cells and some of them formed the structure of apoptotic bodies when COC1/DDP cells were exposed to 2 μM MPPa for 20 h and then 1 J/cm2 irradiation of LED source. The findings demonstrated that the novel LED source could efficiently activated MPPa and LED-activated MPPa could significantly kill cisplatin-resistant ovarian cell line COC1/DDP cells through two major pathways including necrosis and apoptosis, suggesting that LED is a novel and efficient light source and LED-activated MPPa might be potential therapeutic modality for treating cisplatin-resistant ovarian carcinoma.  相似文献   

16.
The presence of ultrasound-induced cavitation in sonodynamic therapy (SDT) treatments has previously enhanced the activity and delivery of certain sonosensitisers in biological systems. The purpose of this work was to investigate the potential for two novel anti-cancer agents from natural derivatives, sanguinarine and ginger root extract (GRE), as sonosensitisers in an SDT treatment with in vitro PANC-1 cells. Both anti-cancer compounds had a dose-dependent cytotoxicity in the presence of PANC-1 cells. A range of six discreet ultrasound power-frequency configurations were tested and it was found that the cell death caused directly by ultrasound was likely due to the sonomechanical effects of cavitation. Combined treatment used dosages of 100 μM sanguinarine or 1 mM of GRE with 15 s sonication at 500 kHz and 10 W. The sanguinarine-SDT and GRE-SDT treatments showed a 6% and 17% synergistic increase in observed cell death, respectively. Therefore both sanguinarine and GRE were found to be effective sonosensitisers and warrant further development for SDT, with a view to maximising the magnitude of synergistic increase in toxicity.  相似文献   

17.
Metal tungstates (MeWO4, Me = Ba, Sr and Ca) were successfully prepared using the corresponding Me(NO3)2·2H2O and Na2WO4·2H2O in ethylene glycol by the 5 h sonochemical process. The tungstate phases with scheelite structure were detected with X-ray diffraction (XRD) and selected area electron diffraction (SAED). Their calculated lattice parameters are in accord with those of the JCPDS cards. Transmission electron microscopy (TEM) revealed the presence of nanoparticles composing the products. Their average sizes are 42.0 ± 10.4, 18.5 ± 5.1 and 13.1 ± 3.3 nm for Me = Ba, Sr and Ca, respectively. Interplanar spaces of the crystals were also characterized with high-resolution TEM (HRTEM). Their crystallographic planes are aligned in systematic array. Six different vibration wavenumbers were detected using Raman spectrometer and are specified as ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and free rotation. Fourier transform infrared (FTIR) spectra provided the evidence of scheelite structure with W-O anti-symmetric stretching vibration of [WO4]2− tetrahedrons at 786-883 cm−1. Photoluminescence emission of the products was detected over the range of 384-416 nm.  相似文献   

18.
Magnetic labeling of living cells creates opportunities for numerous biomedical applications. Here we describe an instantly cell magnetic labeling method based on ultrasound. We present a detailed study on the ultrasound performance of a simple and efficient labeling protocol for H-22 cells in vitro. High frequency focus ultrasound was investigated as an alternative method to achieve instant cell labeling with the magnetic particles without the need for adjunct agents or initiating cell cultures. Mean diameter of 168 nm dextran-T40 coated superparamagnetic iron oxide (SPIO) nanoparticles were prepared by means of classical coprecipitation in solution in our laboratory. H-22 tumor cells suspended in phosphate-buffered saline (PBS, pH=7.2) were exposed to ultrasound at 1.37 MHz for up to 120 s in the presence of SPIOs. The cellular uptake of iron oxide nanoparticles was detected by prussion blue staining. The viability of cells was determined by a trypan blue exclusion test. At 2 W power and 60 s ultrasound exposure in presence of 410 μg/ml SPIOs, H-22 cell labeling efficiency reached 69.4±6.3% and the labeled cells exhibited an iron content of 10.38±2.43 pg per cell. Furthermore, 95.2±3.2% cells remained viable. The results indicated that the ultrasound protocol could be potentially applied to label cells with large-sized magnetic particles. We also calculated the shear stress at the 2 W power and 1.37 MHz used in experiments. The results showed that the shear stress threshold for ultrasonically induced H-22 cell reparable sonoporation was 697 Pa. These findings provide a quantitative guidance in designing ultrasound protocols for cell labeling.  相似文献   

19.
Al-pillared clays supported rare earths (RE/Al-PILC) are prepared and used as supports of palladium catalysts for deep oxidation of low concentrations of benzene (130-160 ppm). The supports and catalysts are characterized by X-ray powder diffraction (XRD), FT-IR, BET, transmission electron microscopy (TEM) and temperature-programmed reduction (H2-TPR). The results show that Al-pillaring results in a strong increase in the basal spacing (d0 0 1) from about 1.2 to 1.8 nm, and an increase in the BET surface area from 63.6 (±3.2) to 238.8 (±11.9) m2/g. Activity tests of deep oxidation of low concentration benzene show catalysts supported on Al-PILC and RE/Al-PILC are obviously more active than that on raw clay. Pd/6% Ce/Al-PILC, in particular, can catalyze the complete oxidation of low concentration benzene at a temperature as low as about 290 °C.  相似文献   

20.
ObjectiveSonodynamic therapy (SDT) is a promising new approach for cancer therapy. The aim of this study was to investigate the tumor affinity of chlorin e6, a photosensitizer, and its sonodynamic effects on NSCLC.MethodsHuman lung adenocarcinoma cells SPCA-1 and mice bearing SPCA-1 tumor xenograft were exposed to ultrasound in the presence or absence of chlorin e6. Chlorin e6 distribution was detected by laser scan confocal microscope. Cell apoptosis and necrosis were studied by flow cytometry analysis. Tumor size and weight were measured after different treatments.ResultsThe concentration of chlorin e6 in tumor tissue was remarkably higher than that in normal muscle near tumor, and the difference was greatest at 18 h (the fluorescence intensity was 5.38-fold higher in tumor than in muscle, P < 0.05). In vivo, ultrasound (0.4–1.6 W/cm2) or chlorin e6 (10–40 mg/kg) alone had no remarkable anti-tumor effects, but the combination of ultrasound (1.6 W/cm2) with chlorin e6 (SDT) hampered tumor growth significantly (P < 0.05). Intraperitoneal injection of 40 mg/kg chlorin e6 exerted no notable side effect on blood, liver and kidney function. Flow cytometry analysis showed that chlorin e6-mediated sonodynamic effect was mainly through the induction of cell necrosis.ConclusionChlorin e6 is a promising sonosensitizer and chlorin e6-mediated SDT may provide a new approach for NSCLC therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号