首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the application of continuous-wave (CW) and tone-burst (TB) vibro-acoustography (VA) experiments for imaging a flawed composite plate. For both modes, the ultrasound frequency is set at f1 = 3 MHz and f2 = 3 MHz + ∣Δf∣. The plate was placed at the focus of the transducer and scanned point-by-point over an area of 60 mm by 50 mm on its frontal face with an increment step equal to 0.25 mm/pixel. The resulting acoustic emission amplitude at ∣Δ f∣ is recorded. For the CW mode the difference frequency was set at ∣Δf∣ = 12.9 kHz. For the TB mode, the burst-emitted signal was 100 μs long at a pulse repetition frequency (PRF) of 100 Hz corresponding to bursts of 300 cycles at 3 MHz, and the difference frequency was set at ∣Δf∣ = 44 kHz. The resulting VA images readily show the shape of the flaws. The images also reveal considerable detail of internal substructures such as the fibers used to reinforce the plate. However, the CW VA image shows an artifact caused by the effect of ultrasound standing waves established between the plate and the concave surface of the transducer, resulting in masking some of the flaws. On the other hand, the TB-VA image is free from such artifact. Despite some advantages of using TB-VA, there are some limitations related to this mode. Advantages and limitations of using the two modes are discussed.  相似文献   

2.
Chalk sphere and cylinder resonance frequencies related to compressional and bending modes were detected in water, using vibro-acoustography, a relatively new imaging technique. The variable (radiation) force of low-frequency excitation, produced by intersecting two primary focused ultrasound waves with slightly different frequencies, forces the object to vibrate. The low-frequency acoustic emission field, resulting from object vibration, was detected by a hydrophone. By fixing the object at the focus of the ultrasound beam and sweeping the frequency of one of the primary beams within a chosen bandwidth, it was possible to detect some of the resonance frequencies (those related to compressional and bending modes) via variations in acoustic emission amplitude. Experimental results showed excellent agreement with finite element calculations. This method can be used to characterize the presence of heterogeneities in various media, in the field of materials science or biology.  相似文献   

3.
田丽  郑昊  谢伟  李发琪  王智彪 《应用声学》2022,41(4):520-526
聚焦超声消融肿瘤过程中的损伤实时监测是临床治疗面临的一个关键难题,双频聚焦超声不仅能提高治疗效率,且能在共焦区域激发出声信号,该声信号的幅值、频率等信息与焦域组织的机械和声学特性紧密相关。本文构建了一种双频聚焦超声治疗及组织损伤实时监测系统。该系统在聚焦超声辐照离体组织过程中,通过外部水听器接收双频激发的组织声发射信号,并通过上位机进行高速数据采集、数字滤波、时频处理等,分析声发射信号幅值与离体组织损伤之间的变化规律。实验研究结果表明:随着焦域组织损伤的形成,其弹性等声学特征发生改变,导致声发射信号幅值逐渐降低,表明声发射信号幅值的变化可较好地反映靶组织声学特征和结构的变化,从而实现聚焦超声治疗中靶组织损伤的实时监测。本文提出的监测方案相比传统超声影像监控更灵敏,有望为聚焦超声临床治疗中的组织损伤监控提供一种新的实时监测方案和手段。  相似文献   

4.

Background

Permanent prostate brachytherapy (PPB) is a common treatment for early stage prostate cancer. While the modern approach using trans-rectal ultrasound guidance has demonstrated excellent outcome, the efficacy of PPB depends on achieving complete radiation dose coverage of the prostate by obtaining a proper radiation source (seed) distribution. Currently, brachytherapy seed placement is guided by trans-rectal ultrasound imaging and fluoroscopy. A significant percentage of seeds are not detected by trans-rectal ultrasound because certain seed orientations are invisible making accurate intra-operative feedback of radiation dosimetry very difficult, if not impossible. Therefore, intra-operative correction of suboptimal seed distributions cannot easily be done with current methods. Vibro-acoustography (VA) is an imaging modality that is capable of imaging solids at any orientation, and the resulting images are speckle free.

Objective and methods

The purpose of this study is to compare the capabilities of VA and pulse-echo ultrasound in imaging PPB seeds at various angles and show the sensitivity of detection to seed orientation. In the VA experiment, two intersecting ultrasound beams driven at f1 = 3.00 MHz and f2 = 3.020 MHz respectively were focused on the seeds attached to a latex membrane while the amplitude of the acoustic emission produced at the difference frequency 20 kHz was detected by a low frequency hydrophone.

Results

Finite element simulations and results of experiments conducted under well-controlled conditions in a water tank on a series of seeds indicate that the seeds can be detected at any orientation with VA, whereas pulse-echo ultrasound is very sensitive to the seed orientation.

Conclusion

It is concluded that vibro-acoustography is superior to pulse-echo ultrasound for detection of PPB seeds.  相似文献   

5.
Vibro-acoustography technique known by its noncontact excitation was used to detect resonance frequencies of objects in water. Two intersecting ultrasound beams generated by a 40 mm-diameter annular array transducer, focused at 35 mm and driven at f1=2.2 MHz and f2=2.22 MHz respectively, were targeted inside the object under test to produce a radiation force beating at the difference frequency f2-f1. This low frequency radiation force was used to excite the resonance vibration modes of the object by sweeping the frequency f2 between 2.22 and 2.275 MHz. The amplitude of the acoustic emission produced by the vibrations of the object was detected by a low frequency hydrophone (BW=60 kHz). By this approach, it was possible to detect resonance frequencies through amplitude variations of the measured acoustic emission. Experiments were conducted in a water tank for objects of different shapes and sizes. With a chalk sphere (15 mm-diameter) two resonance frequencies were detected at 45.75 and 68.75 kHz, and with a cylinder (10.38 mm-diameter and 32.20 mm-length) four principal resonance frequencies were identified in the 60 kHz-bandwidth of the hydrophone. It was shown with finite element calculations performed with Ansys, in which both solid and fluid parts were modelled, that the measured resonance frequencies corresponded to compressional or dilatation vibration modes of the object. It was verified that shear waves generated by torsional vibration modes were not propagated in water, as it is well known. The use of this technique to characterize heterogeneities in different media seems to be relatively more advantageous to other ultrasonic methods.  相似文献   

6.
We propose a phase-modulation fluorometer (PMF) with a light-emitting diode (LED) or a laser diode (LD) used as an excitation light source (ELS) that is driven in the phase-modulation (PM) mode. The PM-ELS generates many frequency sidebands that spread in the vicinity of carrier frequency f c with the interval of modulation frequency f m depending on the maximum phase deviation Δφ. The scheme enables us to derive fluorescence lifetime values of a multicomponent sample at one time. We show a typical numerical simulation result for explaining the principle of operation. To demonstrate the effectiveness of the proposed PMF, we have measured fluorescence lifetimes of three kinds of inorganic fluorescent glasses and that of a mixture solution of 1 × 10?6M rhodamine 6G and 1 × 10?6 M coumarin 152 in ethanol with a volume ratio of 1: 1.  相似文献   

7.
A modulated acoustic radiation force, produced by two confocal tone-burst ultrasound beams of slightly different frequencies (i.e. 2.0 MHz ± Δf/2, where Δf is the difference frequency), can be used to remotely generate modulated low-frequency (Δ? 500 Hz) shear waves in attenuating media. By appropriately selecting the duration of the two beams, the energy of the generated shear waves can be concentrated around the difference frequency (i.e., Δf ± Δf/2). In this manner, neither their amplitude nor their phase information is distorted by frequency-dependent effects, thereby, enabling a more accurate reconstruction of the viscoelastic properties. Assuming a Voigt viscoelastic model, this paper describes the use of a finite-element-method model to simulate three-dimensional (3-D) shear-wave propagation in viscoelastic media containing a spherical inclusion. Nonlinear propagation is assumed for the two ultrasound beams, so that higher harmonics are developed in the force and shear spectrum. Finally, an inverse reconstruction algorithm is used to extract 3-D maps of the local shear modulus and viscosity from the simulated shear-displacement fields based on the fundamental and second-harmonic component. The quality of the reconstructed maps is evaluated using the contrast between the inclusion and the background and the contrast-to-noise ratio (CNR). It is shown that the shear modulus can be accurately reconstructed based on the fundamental component, such that the observed contrast deviates from the true contrast by a root-mean-square-error (RMSE) of only 0.38 and the CNR is greater than 30 dB. If the second-harmonic component is used, the RMSE becomes 1.54 and the corresponding CNR decreases by approximately 10–15 dB. The reconstructed shear viscosity maps based on the second harmonic are shown to be of higher quality than those based on the fundamental. The effects of noise are also investigated and a fusion operation between the two spectral components is applied to enhance the reconstruction quality. Finally, a modified shear-wave spectroscopy technique, shown to be more robust to noise, is described for the estimation of the viscoelastic properties inside and outside the spherical inclusion under conditions of increased noise.  相似文献   

8.
The coherent backscattering (or backscattering enhancement) effect results from persistent interferences between multiply scattered waves propagating along reciprocal paths. This effect results in a doubling of the recorded backscattered intensity reflected exactly in the backward direction with respect to any other direction, after averaging intensity measurements collected over multiple emission angles. This letter presents experimental observations of the coherent backscattering effect from mid-frequency (3-4 kHz) shallow water reverberation measurements collected using a two-dimensional hydrophone array (8.4 × 1.5 m(2)). These results demonstrate the presence of coherent effects in shallow water reverberation not commonly accounted for.  相似文献   

9.
The results of the measurements of the dielectric properties exhibited by metal-containing polymer structures based on Ni(II) complexes in the frequency range f = 102–105 Hz are reported. It is established that, in the range of acoustic frequencies, the permittivity ε decreases with increasing frequency, whereas the dielectric loss tangent tan δ increases. At frequencies f > 104 Hz, the dependence tan δ(f) is characterized by a relaxation maximum. The possible mechanisms of dielectric polarization and charge transfer in an alternating-current electric field are considered.  相似文献   

10.
Enhancing cavitation activity with minimal acoustic intensities could be interesting in a variety of therapeutic applications where mechanical effects of cavitation are needed with minimal heating of surrounding tissues. The present work focuses on the relative efficiency of a signal combining two neighbouring frequencies and a one-frequency signal for initiating ultrasound inertial cavitation. Experiments were carried out in a water tank, using a 550 kHz piezoelectric composite spherical transducer focused on targets with 46 μm roughness. The acoustic signal scattered, either by the target or by the cavitation bubbles, is filtered using a spectral and cepstral-like method to obtain an inertial cavitation activity measurement. The ultrasound excitations consist of 1.8 ms single bursts of single frequency f0 = 550 kHz excitation, in the monofrequency case, and of dual frequency f1 = 535 kHz and f2 = 565 kHz excitation, in the bifrequency case. It is shown that depending on the value of the monofrequency cavitation threshold intensity the bifrequency excitation can increase or reduce the cavitation threshold. The analysis of the thresholds indicates that the mechanisms involved are nonlinear. The progress of the cavitation activity beyond the cavitation threshold is also studied. The slope of the cavitation activity considered as a function of the acoustic intensity is always steeper in the case of the bifrequency excitation. This means that the delimitation of the region where cavitation occurs should be cleaner than with a classical monofrequency excitation.  相似文献   

11.
~~An oscillation phenomenon of low frequency reverberation in the shallow water and its physical explanation1 Zhang, R.. Jin. G. Normal-mode theory of average reverberation intensity in shallow water, Journal of Sound and Vibration, 1987 19(2):215-223 2. Ellis, D. D., A shallow-water normal-mode reverberation model, J. Acoust. Soc, Am., 1995, 97(5): 2804-2814. 3. McDaniel, S. T., Seafloor reverberation fluctuations, J. Acoust. Soc. Am., 1990, 88(3): 1530-1535. 4. Abraham, …  相似文献   

12.
The increasing presence of low frequency sources and the lack of acoustic standard measurement procedures make the extension of reverberation time measurements to frequencies below 100 Hz necessary. In typical ordinary rooms with volumes between 30 m3 and 200 m3 the sound field is non-diffuse at such low frequencies, entailing inhomogeneities in space and frequency domains. Presence of standing waves is also the main cause of bad quality of listening in terms of clarity and rumble effects. Since standard measurements according to ISO 3382 fail to achieve accurate and precise values in third octave bands due to non-linear decays caused by room modes, a new approach based on reverberation time measurements of single resonant frequencies (the modal reverberation time) has been introduced. From background theory, due to the intrinsic relation between modal decays and half bandwidth of resonant frequencies, two measurement methods have been proposed together with proper measurement procedures: a direct method based on interrupted source signal method, and an indirect method based on half bandwidth measurements. With microphones placed at corners of rectangular rooms in order to detect all modes and maximize SNRs, different source signals were tested. Anti-resonant sine waves and sweep signal turned out to be the most suitable for direct and indirect measurement methods respectively. From spatial measurements in an empty rectangular test room, comparison between direct and indirect methods showed good and significant agreements. This is the first experimental validation of the relation between resonant half bandwidth and modal reverberation time. Furthermore, comparisons between means and standard deviations of modal reverberation times and standard reverberation times in third octave bands confirm the inadequacy of standard procedure to get accurate and precise values at low frequencies with respect to the modal approach. Modal reverberation time measurements applied to furnished ordinary rooms confirm previous results in the limit of modal sound field: for highly damped modes due to furniture or acoustic treatment, the indirect method is not applicable due to strong suppression of modes and the consequent deviation of the acoustic field from a non-diffuse condition to a damped modal condition, while standard reverberation times align with direct method values. In the future, further investigations will be necessary in different rooms to improve uncertainty evaluation.  相似文献   

13.
We have studied the ΔJ = 2 rotationally shifted emission lines in the region of the strong absorption of molecular iodine which occurs within the 5145 Å argon ion laser line. We used an etalon tuned, single frequency argon ion laser with a linewidth of 20 MHz to excite the iodine emission and recorded the spectra of the rotational lines with Fabry-Perot spectrometers having resolutions up to 70 MHz (0.0023 cm-1). To overcome Doppler linewidth limitations we took spectra of the emission at small angles to the exciting beam and found the lines to have widths less than our instrumental resolution and frequencies which accurately tuned with the incident laser frequency. We recorded the emission lines for laser frequencies in the absorption line center and out into the absorption wing. Our spectra show that the intensity of the emission lines follows the absorption line profile while the frequency of the emission lines is determined by the laser frequency; the intensity is maximum at the absorption line center, falling by 104 as the laser frequency is moved off the line center, while the line position maintains a constant frequency shift from the laser frequency.  相似文献   

14.
黎昌金  吕百达 《物理学报》2009,58(9):6192-6201
推导出二维非傍轴部分相干厄米-高斯(H-G)光束相干合成和非相干合成的交叉谱密度和光强的解析公式,并分析了一些特例. 合成光束的光强不仅决定于f参数,fσ参数,离轴参数,合成光束的束数和阶数以及传输距离z,而且还决定于合成方式. 对部分相干光的相干合成和非相干合成概念做了物理诠释,其正确性为数值计算例证实. 关键词: 部分相干光的相干和非相干合成 非傍轴部分相干厄米-高斯(H-G)光束 自由空间中的传输方程  相似文献   

15.
The observed frequency dependent optical response of hole doped cuprate La1.85Sr0.15CuO4 superconductors, has been theoretically analysed. Starting from an effective two-dimensional (2D) interaction potential for superlattice of hole doped cuprates treated as a layered electron gas, the spectral function is formulated. Calculations of the optical conductivity σ(ω) have been made within the two-component scheme: one is the coherent Drude carriers responsible for superconductivity and the other is incoherent motion of carriers from one site to other leads to a pairing between Drude carriers. The approach accounts for the anomalies reported (frequency dependence of optical conductivity) in the optical measurements for the normal state. Estimating the effective mass from specific heat measurement and ε from band structure calculations for the low-energy charge density waves, the model has only one free parameter, the relaxation rate. The frequency dependent relaxation rates are expressed in terms of memory functions, and the coherent Drude carriers from the effective interaction potential lead to a sharp peak at zero frequency and a long tail at higher frequencies, i.e. in the infrared (IR) region. However, the hopping of carriers from one site to other (incoherent motion of doped carriers) yields a peak value in the optical conductivity centred at mid-IR (MIR) region. We find that both the Drude and hopping carriers in the superlattice of cuprates will contribute to the optical process of conduction in the CuO2 planes and shows similar results on optical conductivity in the MIR as well as IR frequency regions as those revealed from experiments.  相似文献   

16.
Chen S  Kinnick R  Greenleaf JF  Fatemi M 《Ultrasonics》2006,44(Z1):e123-e126
Vibro-acoustography is an elasticity imaging method that uses two ultrasound beams of slightly different frequency to excite an object and detects the resulting acoustic emission (AE) at the difference frequency. This method is especially sensitive to bubbles due to their nonlinearity. This study explores the harmonic acoustic emission (HAE) at twice the difference frequency emitted from bubbles. A perturbation method based on the dynamic bubble equation is used to derive the AE and HAE from a single bubble excited by dual frequency waves. Simulation shows that HAE is generated only by microbubbles whose resonant frequencies match the incident ultrasound frequencies. In contrast, AE is more sensitive to resonance at the difference frequency, which is relevant to sub-millimeter bubbles. This finding was confirmed by experiments where HAE was produced from Optison microbubbles, but not from larger air bubbles which are off resonance at the incident ultrasound frequency. In conclusion, harmonic acoustic emission is present for microbubbles. It is very sensitive to the size of the bubble and may be used for selective detection of microbubbles.  相似文献   

17.
In order to develop a coherent optical source intended for very low frequency laser spectroscopy, we have studied, manufactured and then tested (calibrated) a device for generating submillimetric waves by frequency difference in a non linear crystal.The mounting is made of two single mode and single line T E A CO2 lasers which, by means of an AsGa crystal, allows the difference f3=f1–f2 of the two near frequencies f1 and f2 emitted by each laser to be obtained.We present a system using two CO2 atmospheric lasers with a simple and efficient pre-ionization and an original treatment of the electrodes.Manufacturing characteristics of the primary sources are detailed and then the obtained Far Infra Red (F I R) emission is studied.  相似文献   

18.
We present an optical processor capable to perform partial second derivatives of an image working with partially coherent illumination. The proposed system utilizes a liquid crystal display, onto which images to be derived are displayed. The method is based on the capacity of these devices to generate simultaneously a contrast reverted replica of the image displayed on it. A positive replica of original image is obtained when the LCD is between crossed polarizers, while the negative one is obtained with the LCD is between parallel polarizers. Since the LCD is a diffraction element, both polarizer arrangements may be simultaneously implemented, for example, in a 4f optical processor using polarization filtering of the different diffraction orders. When three images (two replicas of original image displaced in opposite direction and the other one with contrast reverted and centered at the origin.) are imagined across a slightly defocused plane, one obtains an image with enhanced second derivatives in a given direction. No other incoherent (or partially coherent) optical system is presently known which can perform partial second-order derivatives of an image. Experimental results obtained are presented.  相似文献   

19.
We report measurements of the low-field complex magnetic susceptibility on Pt1?x Mn x forx=0.01, 0.025 and 0.05 and for frequencies ν between 10 and 4,000 Hz. A strong frequency dependence of the freezing temperatureT f is observed: ΔT f /T f Δ lnv=0.025 (decade ν)?1 for all three alloys. These results as well as previous other measurements are interpreted in terms of a phenomenological model.  相似文献   

20.
The self-diffraction of frequency-modulated light in the photorefractive B12TiO20 crystal was studied experimentally. To observe the effect, the crystal was illuminated by two light beams with the relative frequency shift Δf(t). In the experiments, linear frequency modulation was used: Δf(t) = At. As a result of the light self-diffraction on a hologram moving with a constant acceleration, the power of the light beams at the crystal output changed in the form of a chirp pulse. It was found that the pulse appears at the instant of stopping the interference pattern, and its duration is determined by the rate of frequency change A and the hologram recording time τ sc .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号