首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
五元交互体系Li+,Na+,K+//CO32-,Cl--H2O在298.15K的相平衡研究   总被引:1,自引:0,他引:1  
针对西藏扎布耶盐湖卤水组成,采用等温溶解平衡法研究了五元交互体系Li+,Na+,K+//CO32-,Cl--H2O于298.15K时的相平衡,并绘制了相图(空间立体图和Li2CO3饱和的投影图).结果表明,该五元体系相图含有7个结晶区、13条单变量线和4个无变量点.7个结晶区由6个单盐结晶区和1个复盐结晶区组成,分别为LiCl·H2O,NaCl,KCl,Li2CO3,K2CO3·3/2H2O,Na2CO3·10H2O和NaKCO3·6H2O,没有形成固溶体和天然碱(Na2CO3·NaHCO3·2H2O).4个无变量点标记成K1,K2,K3和K4,所对应的平衡固相盐分别是:Li2CO3+NaKCO3·6H2O+Na2CO3·10H2O+KCl,Li2CO3+NaKCO3·6H2O+K2CO3·3/2H2O+KCl,Li2CO3+NaCl+KCl+LiCl·H2O和Li2CO3+NaCl+Na2CO3·10H2O+KCl.  相似文献   

2.
Interactions of sodium chloride with amorphous and crystalline water films, leading to the possible formation of a dilute NaCl solution, were investigated using time-of-flight secondary ion mass spectrometry as a function of temperature. A monolayer of NaCl tends to remain on the surface or in subsurface sites of thick amorphous solid water films (200 monolayers); the Na+ ion is hydrated preferentially, whereas the Cl- ion is segregated at the surface. The hydration structure of NaCl is fundamentally unchanged for viscous liquid water that appears at temperatures higher than 136 K. The solubility of NaCl increases abruptly at 160 K because of the evolution of supercooled liquid water, which can hydrate the Cl- ion efficiently. However, the diffusion of the ions toward the bulk of supercooled liquid water is interrupted by crystallization; therefore, the dilute NaCl solution that is characterized by completely separated Na+-Cl- pairs may not be formed. When NaCl is deposited on the crystalline ice film, hydration of NaCl is enhanced above 160 K as well, indicating that a liquidlike phase coexists with crystals.  相似文献   

3.
Compounds A3+Te6+M33+X25+O14 (A = Na, K; M = Ga, Al, Fe; X = P, As, V) with the Ca3Ga2Ge4O14 structure (sp. gr. P321) were prepared by solid-phase synthesis at 600–850°C in air. The compounds melt incongruently or decompose in the solid state.  相似文献   

4.
The mechanism of the solid state displacement reaction NaCl + KF → NaF + KCl was investigated, employing diffusion couples (single crystals), in air at 550°C.The product layer obtained was formed with NaF and (Na, K)Cl solid solution.From cation concentration profiles, photometrically determined, for the NaClz.sfnc;KF and NaCl|KCl systems after annealing at 550°C, and from X-ray diffraction analysis on product layer surfaces for the NaCl|KF system, it was possible to state that the overall process is governed by a cation-counterdiffusion mechanism.A comparison between the diffusion coefficient evaluated through the rate constant and that calculated by means of the Boltzmann-Matano analysis for the system NaClKCl, allows one to deduce that the cations Na+ and K+ are transported in the (Na, K)Cl solid solution.  相似文献   

5.
采用等温溶解平衡法研究了五元体系Na+, Mg2+//Cl-, SO42-, NO3-, H2O在298.16 K下氯化钠饱和平衡体系的溶解度, 获得了相应的投影干盐图、氯图和水图. 研究结果表明, 在298.16 K下氯化钠饱和时, 该五元体系投影干盐图由8个二盐共饱和的双变面、13条三盐共饱的单变线和6个四盐共饱的零变点构成, 存在两种复盐, 8个二盐共饱双变面分别对应于NaCl+NaNO3, NaCl+Na2SO4, NaCl+MgCl2·6H2O, NaCl+MgSO4·Na2SO4·4H2O, NaCl+Mg(NO3)2·6H2O, NaCl+NaNO3·Na2SO4·2H2O, NaCl+MgSO4·7H2O 和NaCl+MgSO4·(1—6)H2O. 讨论了该相图在新疆硝酸盐矿开发利用过程中的应用.  相似文献   

6.
We present findings from computer simulations of collisions of neon atomic beams with Na20 atomic clusters at different internal temperatures. A functional form for the double differential cross section is determined, and no simple signature of a phase transition is seen, even though the clusters undergo a melting phase transition in the temperature range investigated (100 K–400 K). However, such experiments can be used effectively to measure the internal cluster temperature.  相似文献   

7.
NaCl-NaBr系熔盐溶液的分子动力学研究   总被引:6,自引:0,他引:6  
近年来,用计算机模拟馆公的结构和性质的研究已有较大进展[1,2].但研究工作多集中在有阴离子相同、阳离子不同的盐组成的“同阴离子系”(commonanionsystems),而对由阳离子相同、阴离子不同的盐组成的“同阳离子系”(commoncationsystems)熔盐溶液则甚少研究.鉴于自然界和生产中同阳离子系也不乏实例,建立同阳离子系熔盐溶液的理论屯有必要.为止匕我们先选择NaCI-NaBr系熔盐溶液(同阳离子系的一个最简单的典型)为对象,开展分子动力学方法计算机模拟研究.1模型和计算方法采用标准文献中的计算模拟和方法,离子间劳用Fumi-…  相似文献   

8.
In this paper we explore the effects of the electronic structure, the charge state, and the nature of energy distribution of isomers on the thermodynamic properties of sodium clusters. The focus of the work is to isolate the effects of these ingredients on thermodynamic behavior by choosing specific clusters. Toward this end we investigate Na(39) (-), Na(40), and Na(41) (+), which are the electronic closed shell systems which differ in number of atoms and charge state. We also examine Na(39), Na(39) (+), Na(40) (+), and Na(41) clusters having different charges of these clusters. Our density functional molecular dynamics simulations show that all electronic shell-closing clusters have similar melting temperature of approximately 310 K. Remarkably, it is observed that an addition of even one electron to Na(39) increases the melting temperature by about 40 K and makes the specific heat curve sharper. All the cationic clusters show broadened specific heat curves.  相似文献   

9.
An ab initio molecular dynamics method was used to compare the ionic dissolution of soluble sodium chloride (NaCl) in water clusters with the highly insoluble silver chloride (AgCl). The investigations focused on the solvation structures, dynamics, and energetics of the contact ion pair (CIP) and of the solvent-separated ion pair (SSIP) in NaCl(H(2)O)(n) and AgCl(H(2)O)(n) with cluster sizes of n = 6, 10 and 14. We found that the minimum cluster size required to stabilize the SSIP configuration in NaCl(H(2)O)(n) is temperature-dependent. For n = 6, both configurations are present as two distinct local minima on the free-energy profile at 100 K, whereas SSIP is unstable at 300 K. Both configurations, separated by a low barrier (<10 kJ mol(-1)), are identifiable on the free energy profiles of NaCl(H(2)O)(n) for n = 10 and 14 at 300 K, with the Na(+)/Cl(-) pairs being internally solvated in the water cluster and the SSIP configuration being slightly higher in energy (<5 kJ mol(-1)). In agreement with the low bulk solubility of AgCl, no SSIP minimum is observed on the free-energy profiles of finite AgCl(H(2)O)(n) clusters. The AgCl interaction is more covalent in nature, and is less affected by the water solvent. Unlike NaCl, AgCl is mainly solvated on the surface in finite water clusters, and ionic dissolution requires a significant reorganization of the solvent structure.  相似文献   

10.
The crystallization of sodium chloride from its melt and mixtures with other sodium halides is investigated by means of transition path sampling molecular dynamics simulations. From this we explore the nucleation mechanisms of both the solidification and the melting process at the atomistic level of detail. By incorporation of impurities the nucleation picture of the eutectic mixtures changes considerably. Doping the NaCl crystal with fluoride ions, we observed the substitutional defects to act as favored nucleation centers for the melting transition. This phenomenon plays a critical role during the solidification process of NaCl-NaF melts of low NaF concentration and is demonstrated to account for the segregation of fluoride ions. While NaCl-NaF corresponds to a eutectic system, we also investigated NaCl-NaBr mixtures. The bromide ions were observed to behave very similarly to chloride ions. As a consequence, no phase separation occurs and Na(Cl1-xBrx) solid solutions are formed. At the example of these two prototypes we demonstrate the study of the atomistic mechanisms related to phase separation processes and solid solution formation during the nucleation and growth of crystals from multinary melts.  相似文献   

11.
The phase diagrams of the ternary reciprocal systems Na,K||BO2,CO3 and Na,K||BO2,Cl were studied for the first time by a calculation-experimental method and by differential thermal analysis. Analytical models of phase equilibrium states were derived, and the coordinates of eutectics were found to be (680°C, 32 mol % NaBO2, 68 mol % KCl) and (648°C, 9 mol % NaBO2, 45.5 mol % NaCl, 45.5 mol % KCl). Binary solid solutions based on metaborates and carbonates of sodium and potassium were shown to be stable. The possibility of synthesizing tungsten oxide bronzes in a eutectic melt in the ternary system NaBO2–NaCl–КCl was revealed.  相似文献   

12.
采用固定床反应器,结合X射线衍射(XRD)表征和热力学计算研究了水稻秸秆与PVC塑料共气化过程中钾钠氯的迁移和状态变化。结果表明,混合物中氯的释放率与反应温度和PVC塑料的量(氯含量)有关。当反应温度为800~900℃时,PVC的量对混合物中氯元素释放率的影响最为显著;气化温度达900℃时,含PVC 20%(氯含量为11.5%)的水稻秸秆混合物中,氯元素的释放率较纯水稻上升了16.5%。与此同时,氯含量的增加也促进了钾钠在气相中的释放。气化温度为850℃时,当混合物中PVC比例大于20%(氯含量大于11.5%)时,氯对钾钠的气相析出有一定抑制作用;钾钠以KCl和NaCl的形式滞留在固相中,其含量随着混合物中PVC量的升高而降低。  相似文献   

13.
采用等温蒸发法研究了四元体系Na+, K+//Cl-, B4O2-7-H2O 273 K时的介稳相平衡与相图. 测定了该体系273 K平衡液相中各组分的溶解度及平衡液相的密度; 绘制了该体系的介稳相图. 该四元体系273 K相图由5条溶解度单变量线、4个结晶区及2个共饱和点组成. 体系无复盐或固溶体形成. 四个结晶区分别对应单盐NaCl、KCl、K2B4O7·4H2O 和Na2B4O7·10H2O. 共饱点E1处KCl、NaCl及Na2B4O7·10H2O三盐共饱和,所对应的平衡液相组成为w(Cl-)=29.15%, w(B4O2-7)=0.64%, w(K+)=5.97%, w(Na+)=15.55%; 共饱和点E2处盐KCl、Na2B4O7·10H2O和K2B4O7·4H2O的三盐共饱和, 所对应的平衡液相组成为w(Cl-)=22.84%, w(B4O2-7)=10.98%, w(K+)=28.01%, w(Na+)=1.53%. 同体系298 K时的稳定相图相比, 273 K时硼酸钠的结晶区变大, 而硼酸钾、氯化钠结晶区变小.  相似文献   

14.
We probe the local electronic structure at solvated Na+ ions in 1 M aqueous NaCl solutions as a function of pH. A dramatic change in the Na+ white line intensity in X-ray absorption is observed for high pH values, reflecting a changing local electronic structure at the Na+ ions when OH- is present. Given the relative abundance of sodium and hydroxide ions, we conclude that one OH- affects at least 2.4+/-0.6 Na+ ions in an electronically noticeable way at pH 13. From the experimental data we infer that spatially extended clusters or networks incorporating Na+ and OH- can exist in the electrolyte solution. The experimental data are complemented by molecular dynamics simulations, which indicate the presence of structured clusters incorporating Na+, OH-, and solvent molecules.  相似文献   

15.
High-level ab initio calculations were carried out on a series of K+.X cluster ions (X = O, O2, N2, CO2, H2O) and X.K+.Y ions. Rice-Ramsberger-Kassel-Markus theory was then used to estimate the rate coefficients for a series of recombination and ligand-switching reactions that govern the ion-molecule chemistry of K+ in the upper mesosphere and lower thermosphere. These rate coefficients were then included in an atmospheric model of potassium chemistry. The important result is that K+ forms weakly bound clusters with N2, O2, and O (the major atmospheric species), with binding energies between 10 and 22 kJ mol(-1). Even under atmospheric conditions (200 K and 10(-3) Torr), these cluster dissociate in less than 1 s. This prevents the formation by ligand-switching of the more stable CO2 and H2O clusters, which could then undergo dissociative recombination with electrons to produce K. The result is that K+ ions have a much longer lifetime against neutralization in the upper atmosphere than other metallic ions such as Na+ and Fe+.  相似文献   

16.
A ternary stannide of sodium and magnesium, Na(2)MgSn, was synthesized from the elements, and the crystal structure was determined by single-crystal X-ray diffraction. The compound crystallizes in the Li(2)CuAs structure type (hexagonal, P6(3)/mmc, Z = 2, a = 5.0486(11) ?, c = 10.095(2) ?), and its structure is built up of two-dimensional honeycomb layers of (2)(∞)[(MgSn)(2-)] stacked along the c-axis, with Na atoms as "space fillers". First-principles computations at various levels of density functional theory (DFT) verify that the most stable configuration is the one in which Na and Mg atoms occupy the 4f and 2b sites, respectively, and thus DFT provides a necessary complement to X-ray structural elucidation. Our computations also predict that Na(2)MgSn must be a semiconductor with a small band gap. In accord with these predictions, the electrical resistivity measured for a polycrystalline sample of Na(2)MgSn is 9.6-10.4 mΩ cm in the range of 90-635 K, and the Seebeck coefficient decreases from +390 μV K(-1) (at 300 K) to +150 μV K(-1) (at 430 K).  相似文献   

17.
Ion-water-cluster properties are investigated both through the multistate empirical valence bond potential and a polarizable model. Equilibrium properties of the ion-water clusters H+(H2O)100, Na+(H2O)100, Na+(H2O)20, and Cl-(H2O)17 in the temperature region 100-450 K are explored using a hybrid parallel basin-hopping and tempering algorithm. The effect of the solid-liquid phase transition in both caloric curves and structural distribution functions is investigated. It is found that sodium and chloride ions largely reside on the surface of water clusters below the cluster melting temperature but are solvated into the interior of the cluster above the melting temperature, while the solvated proton was found to have significant propensity to reside on or near the surface in both the liquid- and solid-state clusters.  相似文献   

18.
A delicate balance between competing and cooperating noncovalent interactions determines the three-dimensional structure of hydrated alkali-metal ion clusters. A critical factor influencing the balance reached is the internal energy content (or effective temperature) of the ion cluster. Cold cluster ions (approximately 50-150 K) have little internal energy, and enthalpic contributions have a greater influence on the relative population of low-lying minima. In clusters whose internal energy distributions correspond to temperatures approximately 250-500 K, entropic effects are expected to influence which structural isomers are present, favoring those where free energy has been minimized. Infrared photodissociation spectra of M(+)(H2O)(x=2-5) (approximately 250-500 K) are reported for M = Li, Na, K, and Cs to explore ion dependencies and entropic effects on the observed three-dimensional structure.  相似文献   

19.
The interaction forces in emulsion films stabilized using hydrophobically modified inulin (INUTEC SP1) were investigated as a function of concentrations of electrolytes of different types (NaCl, Na2SO4, and MgSO4). At a constant disjoining pressure of 36 kPa, a constant temperature of 22 degrees C, and a film radius of 100 microm, the film thickness, hw, decreased with an increase in electrolyte concentration until a critical value, Cel,cr, was reached above which hw remained constant. Cel,cr decreased with an increase in electrolyte valency (Cel,cr = 5 x 10(-2) mol.dm(-3) for NaCl and 1 x 10(-2) mol.dm(-3) for Na2SO4 and MgSO4). The reduction in film thickness below Cel,cr could be accounted for by the compression of the electrical double layer. The Pi-hw isotherms below Cel,cr could be fitted using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (constant charge and constant potential cases were considered). At a certain pressure, the film jumped to a Newton black film. The pressure at the jump decreased with an increase in electrolyte valency as a result of the reduction of the electrostatic barrier. At electrolyte (NaCl, Na2SO4, or MgSO4) concentrations higher than Cel,cr, the jump occurred at a low pressure that was independent of the electrolyte type. The thickness of the Newton black film was independent of both the concentration and nature of the electrolytes studied. The results show clearly that the polyfructose loops and tails remain strongly hydrated both in water and in high concentrations of electrolytes of different types, and these results explain the high INUTEC SP1 emulsion stability against coalescence of emulsions prepared under such conditions.  相似文献   

20.
The glass-forming reactions between sodium carbonate (Na2CO3) and silica (SiO2) have been investigated by 23Na, 29Si, and 13C magic-angle spinning (MAS) NMR spectroscopy. The multinuclear MAS NMR approach identifies and quantifies reaction products and intermediates, both glassy and crystalline. A series of powdered batches of initial composition Na2CO3.xSiO2 (x = 1, 2) corresponding to a sodium metasilicate (Na2SiO3) and sodium disilicate (Na2Si2O5) stoichiometry were investigated after periods of isothermal and nonisothermal heat treatments at different temperatures. Analysis of the 23Na quadrupolar coupling parameters has identified the early reaction product in all cases as crystalline Na2SiO3. In the nonisothermal experiment, this reaction is preceded by an early silica-rich melt phase formed around 850 degrees C. The early reactions are controlled by solid-state Na+ diffusion across the reaction zone in the grain interface layer. Crystalline Na2SiO3 precipitates in the interface layer, increasing its thickness between the Na2CO3 and the SiO2 grains and slowing down the rate of Na+ migration. This creates a secondary phase, which is temperature dependent. At low temperatures, where Na+ migration is impaired, the production of Na2SiO3 ceases and silica-richer phases are precipitated. In the case of the sodium disilicate batch, where excess SiO2 is present, a secondary reaction of Na2SiO3 with SiO2 forming a glassy phase is observed. A transient carbon-bearing phase has been identified by 13C NMR as a NaCO3- complex loosely bound to bridging oxygens in the silicate network at the SiO2 grain surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号