首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this work is to continue development of a model to provide a fast and accurate in-line NLTE capability for calculating plasma spectral properties in large-scale radiation-transport hydrodynamic simulations. A method has recently been developed to transform the large detailed atomic models into very small models that can be used for fast in-line calculations. The reduced model is more accurate than the average-atom models conventionally used in such simulations. In the present work, spectra calculated with the reduced model are compared to the original detailed model and the average-atom model. The spectra of iron and gold plasmas under various plasma conditions are compared.  相似文献   

2.
《力学快报》2020,10(4):249-252
A data driven computational model that accounts for more than two material states has been presented in this work. Presented model can account for multiple state variables, such as stresses,strains, strain rates and failure stress, as compared to previously reported models with two states.Model is used to perform deformation and failure simulations of carbon nanotubes and carbon nanotube/epoxy nanocomposites. The model capability of capturing the strain rate dependent deformation and failure has been demonstrated through predictions against uniaxial test data taken from literature. The predicted results show a good agreement between data set taken from literature and simulations.  相似文献   

3.
A summary of a variational average atom model which is used to close the quantum Ornstein–Zernike relations is presented. The first numerical results are presented from a code developed to solve these equations with two simplifying assumptions, described in the text. The inputs are the nuclear charge of the plasma species, the average material density and the temperature. Results generated include the spatially dependent electronic and nuclear densities, which are related to the electron-nucleus and nucleus–nucleus pair distribution functions. These in turn are simply related to the static structure factors. Numerical results presented are in the form of average ionization and nucleus–nucleus pair distribution functions. Average ionizations for carbon are compared to experiment and other models, showing good agreement.  相似文献   

4.
The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different atomic species for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly-excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra.We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with sufficient accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, Δn = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums.Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short time steps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.  相似文献   

5.
The feasibility and benefits of applying a novel multi-variable dynamic gain scheduling (DGS) approach to a complex ‘industry-scale’ aircraft model are investigated; the latter model being a non-linear representation of the intrinsically unstable F16 aircraft incorporating detailed aerodynamic data. DGS is a novel control approach, which involves scheduling controller gains with one (or more) of the system states whilst accounting for the ‘hidden coupling terms’ ensuring a near-ideal response. It is effective for non-linear systems exhibiting rapid dynamic changes between operating points. Recently, this approach has been extended to a multi-variable and multi-input context. Hence, unlike previous DGS work on realistic aircraft models, relevant feedback gains are to be scheduled with all (i.e. two) state variables in order to demonstrate the ability of the approach to compensate for non-linearity during rapid manoeuvres and consequently achieving better flying qualities over a range of conditions than standard gain scheduling. Time history simulations are used to draw comparisons with the more traditional ‘static’ gain scheduling and input gain scheduling methods.  相似文献   

6.
A detailed plasma kinetics model for carbon is presented which has been calculated using the Los Alamos suite of atomic kinetics codes. Models have been generated in the configuration-average approximation and the fine-structure approximation, which includes configuration-interaction and intermediate-coupling effects. These models have been used to generate relevant plasma quantities, ranging from the average ionization stage to detailed emission spectra. For many of the quantities examined, and for certain plasma conditions, significant differences exist between the configuration-average model and the detailed fine-structure model, indicating that such a detailed fine-structure model is necessary to accurately model atomic properties in such plasmas.  相似文献   

7.
A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is divided into a stick state and a slip state. The contact constraint model and Coulomb friction model are used respectively to deal with the two states. Based on this hybrid mod-eling method, dynamic equations of the system, which include all states (before, during, and after the collision) are obtained. Simulation results of a concrete example are compared with the results obtained from two other models: a nontangential friction model and a modified Coulomb model. Differences in the results from the three models are discussed. The tangential friction force cannot be ignored when an oblique impact occurs. In addition, the results obtained from the model proposed in this paper are more consistent with real movement.  相似文献   

8.
Large-eddy simulations have been coupled with a conservative formulation of the conditional moment closure (CMC) approach for the computation of a turbulent, partially-premixed dimethyl-ether jet flame. Two different numerical setups and 3 different detailed chemical mechanisms were investigated. The results are compared with measurements of velocity, temperature, and major and intermediate species. The general agreement between simulations and experiments is very good, and differences between the different mechanisms are limited to the predicted concentrations of intermediates only. Larger differences can be observed if the CMC grid size is reduced. This is due to reduced averaging effects on the conditionally averaged dissipation rates that allow to better capture high dissipation events that lead to larger deviations from a fully burning solution. A high CMC resolution provides excellent agreement with experiments throughout the flame and the results demonstrate CMC’s capability to accurately predict turbulence-chemistry interactions in partially-premixed flames involving complex chemistry.  相似文献   

9.
The last several years have witnessed a surge of activity involving the interaction of clusters with intense ultrashort pulse lasers. The interest in laser–cluster interaction has not been only of academic interest, but also because of the wide variety of potential applications. Clusters can be used as a compact source of X-rays, incoherent as well as coherent, and of fast ions capable of driving a fusion reaction in deuterium plasmas. In one set of xenon cluster experiments, in particular, amplification of ~2.8 Å X-rays has been observed [28]. X-ray amplification in cluster media is a phenomenon of critical importance and may lead to applications such as EUV lithography, EUV and X-ray microscopy, X-ray tomography, and variety of applications in biology and material sciences. However, while amplification of ~2.8 Å X-rays has been documented in experiments, the mechanism for producing it remains to be fully understood. In this talk, a xenon model of laser–cluster interaction dynamics is presented to shed light on the processes responsible for amplification. The focus of this research is on the feasibility of creating population inversions and gain in some of the inner-shell hole state transitions within the M-shell of highly ionized xenon. The model couples a molecular dynamics (MD) treatment of the explosively-driven, non-Maxwellian cluster expansion to a comprehensive multiphoton-radiative ionization dynamic (ID) model including single- and double-hole state production within the Co- and Fe-like ionization stages of xenon. The hole-state dynamics is self-consistently coupled to a detailed valence-state collisional-radiative dynamics of the Ni-, Co-, and Fe-like ionization stages of xenon. In addition, the model includes tunneling ionization rates that confirm an initial condition assumption that Ni-like ground states can be created almost instantaneously, on the order of a femtosecond or less, i.e., at laser intensities larger than 1019 W/cm2, all of the N-shell, n = 4 electrons are striped from a xenon atom in less than a femtosecond. Because of the abundance of these ground states, large numbers of n = 2, inner-shell hole states and large population inversions can be created when the Ni-like ground states are photo- or collisionally ionized. Once the M-shell is entered, tunneling ionization slows down as does collisional ionization due to the fall in ion density as the cluster expands. Moreover, as the cluster density goes down, our combined MD and ID calculations show that so do the calculated population inversions. Thus, our calculations do not support the initial experimental data interpretations in which the measured gains have been associated with double holes in more highly ionized stages of xenon (Xe32+, Xe34+, Xe35+, and Xe37+), which our calculations suggest would require laser intensities in excess of 1.5 × 1020 W/cm2, for a 248 nm, ~250 fs laser pulse focused in a gas of xenon clusters. At laser intensities used in the experiment, such ionization stages would be reached, but only later in time when cluster densities have fallen by several orders of magnitude from their initial values to values where pumping rates are too low and gains cannot be generated.  相似文献   

10.
The strength of true metallic nanowires and nanopillars (diameters below 100 nm) is known to be higher than the strength of bulk metals and is most likely controlled by dislocation nucleation from free surfaces. Dislocation nucleation is a thermally activated process that is sensitive to both temperature and strain rate. However, most simulations rely on high strain rate molecular dynamics to investigate strength and nucleation, which is limited by short molecular dynamics time scales. In this work, the energetics of dislocation nucleation in gold nanowires are computed using atomistic simulations, and transition state theory is used to estimate the strength at experimental strain rates revealing detailed information outside the realm accessible to molecular dynamics simulations. This allows investigation into the competition between thermally activated dislocation nucleation and other failure mechanisms such as elastic and structural instabilities. Additionally, the mechanisms of dislocation nucleation are compared against analytical continuum models which allow a better understanding of the nucleation process including the effects of the wire surfaces. This study helps clarify and consolidate our understanding of the nature of dislocation nucleation in small structures.  相似文献   

11.
This work considers the effect of resonances in systems in which the two resonant frequencies are allowed to slowly change, depending on the state of the system. A strongly nonlinear system is introduced that allows for exact solutions. This system is then coupled to a second component, and through the method of averaging, a reduced-order model is developed that approximates the dynamical behavior near a 1:1 resonance between the two components. The resulting reduced system is studied using bifurcation theory and Melnikov analysis to obtain predictions of the near-resonant dynamics. Finally, these predictions are compared to numerical simulations of the original equations. Two main points appear: (i) for nonlinear systems, the period–amplitude dependence plays an important role in the evolution of the system, and (ii) the coordinates identified within the reduced system allow for the qualitative structure of the original equations to appear.  相似文献   

12.
13.
This paper aims to develop a multiaxial concrete model for implementation in finite element software dedicated to the analysis of structures in fire. The need for proper concrete model remains a challenging task in structural fire engineering because of the complexity of the concrete mechanical behavior characterization and the severe requirements for the material models raised by the development of performance-based design. A fully three-dimensional model is developed based on the combination of elastoplasticity and damage theories. The state of damage in concrete, assumed isotropic, is modeled by means of a fourth order damage tensor to capture the unilateral effect. The concrete model comprises a limited number of parameters that can be identified by three simple tests at ambient temperature. At high temperatures, a generic transient creep model is included to take into account explicitly the effect of transient creep strain. The numerical implementation of the concrete model in a finite element software is presented and a series of numerical simulations are conducted for validation. The concrete behavior is accurately captured in a large range of temperature and stress states. A limitation appears when modeling the concrete post-peak behavior in highly confined stress states, due to the coupling assumption between damage and plasticity, but the considered levels of triaxial confinement are unusual stress states in structural concrete.  相似文献   

14.
碳氢燃料点火燃烧的简化化学反应动力学模型   总被引:3,自引:1,他引:3  
基于``准稳态'方法建立了一套复杂化学反应动力学模型简化方法和相应的软件SPARCK. 并以3种典型的碳氢燃料------甲烷、乙烯和庚烷为研究对象,从甲烷点火燃烧的GRI2.11详 细基元反应动力学模型出发简化得出了包含14个组分10步总包反应形式的简化化学反应动 力学模型,从乙烯燃烧的51组分365详细基元反应模型出发简化得出了包含20个组分16 步总包反应形式的简化化学反应动力学模型,从庚烷点火燃烧的160组分1540详细基元反 应模型出发简化得出了包含26个组分22步总包反应形式的简化化学反应动力学模型. 通过 对典型激波管试验的结果对比可以看出:得到的简化反应动力学模型能较为有效地再现 详细基元反应模型的反应机理,具有较高的计算精度. 在工程计算中有较好的应用前景.  相似文献   

15.
In determining structure–property relations for plasticity at different size scales, it is desired to bridge concepts from the continuum to the atom. This raises many questions related to volume averaging, appropriate length scales of focus for an analysis, and postulates in continuum mechanics. In a preliminary effort to evaluate bridging size scales and continuum concepts with descritized phenomena, simple shear molecular dynamics simulations using the Embedded Atom Method (EAM) potentials were performed on single crystals. In order to help evaluate the continuum quantities related to the kinematic and thermodynamic force variables, finite element simulations (with different material models) and macroscale experiments were also performed. In this scoping study, various parametric effects on the stress state and kinematics have been quantified. The parameters included the following: crystal orientation (single slip, double slip, quadruple slip, octal slip), temperature (300 and 500 K), applied strain rate (106–1012 s−1), specimen size (10 atoms to 2 μm), specimen aspect ratio size (1:8–8:1), deformation path (compression, tension, simple shear, and torsion), and material (nickel, aluminum, and copper). Although many conclusions can be drawn from this work, which has provided fodder for more studies, several major conclusions can be drawn.
• The yield stress is a function of a size scale parameter (volume-per-surface area) that was determined from atomistic simulations coupled with experiments. As the size decreases, the yield stress increases.
• Although the thermodynamic force (stress) varies at different size scales, the kinematics of deformation appears to be very similar based on atomistic simulations, finite element simulations, and physical experiments.
Atomistic simulations, that inherently include extreme strain rates and size scales, give results that agree with the phenomenological attributes of plasticity observed in macroscale experiments. These include strain rate dependence of the flow stress into a rate independent regime; approximate Schmid type behavior; size scale dependence on the flow stress, and kinematic behavior of large deformation plasticity.  相似文献   

16.
Numerical simulations of two-fluid flow models based on the full Navier–Stokes equations are presented. The models include six and seven partial differential equations, namely, six- and seven-equation models. The seven-equation model consists of a non-conservative equation for volume fraction evolution of one of the fluids and two sets of balance equations. Each set describes the motion of the corresponding fluid, which has its own pressure, velocity, and temperature. The closure is achieved by two stiffened gas equations of state. Instantaneous relaxation towards equilibrium is achieved by velocity and pressure relaxation terms. The six-equation model is deduced from the seven-equation model by assuming an infinite rate of velocity relaxation. In this model, a single velocity is used for both fluids. The numerical solutions are obtained by applying the Strang splitting technique. The numerical solutions are examined in a set of one, two, and three dimensions for both the six- and seven-equation models. The results indicate very good agreement with the experimental results. There is an insignificant difference between the results of the two models, but the six-equation model is much more economical compared to the seven-equation model.  相似文献   

17.
Within the approximations of spherical lattice cell, central-field, and relativistic Fermi statistics, an algorithm with average atom model is presented to calculate the electronic energy levels and equation of state for hot and dense matter at arbitrary densities and temperatures. Choosing Zink's analytical potential as initial potential, we have solved the Dirac-Slater equation which satisfies the Weigner-Seitz boundary condition. The electronic energy bands are not taken into account. Taking energy level degeneracy as a continuous function of density, we have considered the pressure ionization effects for highly dense matter. Results for13Al atom are shown.  相似文献   

18.
This study provides a critical comparison of the internal state variables constitutive model sproposed recently in the literature for metals at elevated temperatures and deformed over a wide range of strain rates. As a result of the observations from this comparative evaluation, a set of modified constitutive relations is also presented. The experimental data available in the literature for 1100 aluminum and a fully dense high purity aluminumm were used along with a nonlinear least squares fitting procedure to estimate the material constants. A nonlinear functional dependence of the effective stress with respect to the internal state variable in the evolution relationship was determined to model more effectively, compared to previous models, the case that a material may exhibit both hardening and softening behaviors, respectively, corresponding to different applied strain rates at the same temperature. The modified relations presented here propose a simple form of this nonlinear function, which accurately models the material response and which allows a more robust implementation in numerical simulations. The deformation of an aluminium gradient specimen was studied for further comparison of the three constitutive models considered and for a demonstration of the validity of this model.  相似文献   

19.
Grain boundary influence on material properties becomes increasingly significant as grain size is reduced to the nanoscale. Nanostructured materials produced by severe plastic deformation techniques often contain a higher percentage of high-angle grain boundaries in a non-equilibrium or energetically metastable state. Differences in the mechanical behavior and observed deformation mechanisms are common due to deviations in grain boundary structure. Fundamental interfacial attributes such as atomic mobility and energy are affected due to a higher non-equilibrium state, which in turn affects deformation response. In this research, atomistic simulations employing a biased Monte Carlo method are used to approximate representative non-equilibrium bicrystalline grain boundaries based on an embedded atom method potential, leveraging the concept of excess free volume. An advantage of this approach is that non-equilibrium boundaries can be instantiated without the need of simulating numerous defect/grain boundary interactions. Differences in grain boundary structure and deformation response are investigated as a function of non-equilibrium state using Molecular Dynamics. A detailed comparison between copper and aluminum bicrystals is provided with regard to boundary strength, observed deformation mechanisms, and stress-assisted free volume evolution during both tensile and shear simulations.  相似文献   

20.
Integral-type nonlocal damage models describe the fracture process zones by regular strain profiles insensitive to the size of finite elements, which is achieved by incorporating weighted spatial averages of certain state variables into the stress–strain equations. However, there is no consensus yet how the influence of boundaries should be taken into account by the averaging procedures. In the present study, nonlocal damage models with different averaging procedures are applied to the modelling of fracture in specimens with various boundary types. Firstly, the nonlocal models are calibrated by fitting load–displacement curves and dissipated energy profiles for direct tension to the results of mesoscale analyses performed using a discrete model. These analyses are set up so that the results are independent of boundaries. Then, the models are applied to two-dimensional simulations of three-point bending tests with a sharp notch, a V-type notch, and a smooth boundary without a notch. The performance of the nonlocal approaches in modelling of fracture near nonconvex boundaries is evaluated by comparison of load–displacement curves and dissipated energy profiles along the beam ligament with the results of meso-scale simulations. As an alternative approach, elastoplasticity combined with nonlocal and over-nonlocal damage is also included in the comparative study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号