首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let Ω be a bounded domain in the n-dimensional Euclidean space. In the cylindrical domain QT=Ω x [0, T] we consider a hyperbolic-parabolic equation of the form (1) $$Lu = k(x,t)u_{tt} + \sum\nolimits_{i = 1}^n {a_i u_{tx_i } - } \sum\nolimits_{i,j = 1}^n {\tfrac{\partial }{{\partial x_i }}} (a_{ij} (x,t)u_{x_j } ) + \sum\nolimits_{i = 1}^n {t_i u_{x_i } + au_t + cu = f(x,t),} $$ where \(k(x,t) \geqslant 0,a_{ij} = a_{ji} ,\nu |\xi |^2 \leqslant a_{ij} \xi _i \xi _j \leqslant u|\xi |^2 ,\forall \xi \in R^n ,\nu > 0\) . The classical and the “modified” mixed boundary-value problems for Eq. (1) are studied. Under certain conditions on the coefficients of the equation it is proved that these problems have unique solution in the Sobolev spaces W 2 1 (QT) and W 2 2 (QT).  相似文献   

2.
This paper is concerned with power concavity properties of the solution to the parabolic boundary value problem $$\begin{aligned} (P)\quad \left\{ \begin{array}{l@{\quad }l} \partial _t u=\varDelta u +f(x,t,u,\nabla u) &{} \text{ in }\quad \varOmega \times (0,\infty ),\\ u(x,t)=0 &{} \text{ on }\quad \partial \varOmega \times (0,\infty ),\\ u(x,0)=0 &{} \text{ in }\quad \varOmega , \end{array} \right. \end{aligned}$$ where $\varOmega $ is a bounded convex domain in $\mathbf{R}^n$ and $f$ is a nonnegative continuous function in $\varOmega \times (0,\infty )\times \mathbf{R}\times \mathbf{R}^n$ . We give a sufficient condition for the solution of $(P)$ to be parabolically power concave in $\overline{\varOmega }\times [0,\infty )$ .  相似文献   

3.
We consider quasilinear parabolic variational–hemivariational inequalities in a cylindrical domain $Q=\Omega \times (0,\tau )$ of the form $$\begin{aligned} u\in K:\ \langle u_t+Au, v-u\rangle +\int _Q j^o(x,t, u;v-u)\,dxdt\ge 0,\ \ \forall \ v\in K, \end{aligned}$$ where $K\subset X_0=L^p(0,\tau ;W_0^{1,p}(\Omega ))$ is some closed and convex subset, $A$ is a time-dependent quasilinear elliptic operator, and $s\mapsto j(\cdot ,\cdot ,s)$ is assumed to be locally Lipschitz with $(s,r)\mapsto j^o(x,t, s;r)$ denoting its generalized directional derivative at $s$ in the direction $r$ . The main goal of this paper is threefold: first, an existence and comparison principle is proved; second, the existence of extremal solutions within some sector of appropriately defined sub-supersolutions is shown; third, the equivalence of the above parabolic variational–hemivariational inequality with an associated multi-valued parabolic variational inequality of the form $$\begin{aligned} u\in K:\ \langle u_t+Au, v-u\rangle +\int _Q \eta \, (v-u)\,dxdt\ge 0,\ \ \forall \ v\in K \end{aligned}$$ with $\eta (x,t)\in \partial j(x,t, u(x,t))$ is established, where $s\mapsto \partial j(x,t, s)$ denotes Clarke’s generalized gradient of the locally Lipschitz function $s\mapsto j(\cdot ,\cdot ,s)$ .  相似文献   

4.
Using variational methods, we study the existence and nonexistence of nontrivial weak solutions for the quasilinear elliptic system $$\left\{\begin{array}{ll}- {\rm div}(h_1(|\nabla u|^2)\nabla u) = \frac{\mu}{|x|^2}u + \lambda F_u(x, u, \upsilon)\quad {\rm in}\,\Omega,\\- {\rm div}(h_2(|\nabla \upsilon|^2)\nabla \upsilon) = \frac{\mu}{|x|^2}\upsilon + \lambda F_\upsilon(x,u,\upsilon)\quad {\rm in}\,\Omega,\\u = \upsilon = 0 \qquad \qquad \qquad \qquad \qquad \qquad {\rm in}\, \partial\Omega, \end{array}\right.$$ where \({\Omega \subset \mathbb{R}^N,N \geq 3}\) , is a bounded domain containing the origin with smooth boundary \({\partial \Omega ; h_i, i = 1, 2}\) , are nonhomogeneous potentials; \({(F_u, F_v) = \nabla F}\) stands for the gradient of a sign-changing C 1-function \({F : \Omega \times \mathbb{R}^2 \to \mathbb{R}}\) in the variable \({{w = (u, v) \in \mathbb{R}^2}}\) ; and λ and μ are parameters.  相似文献   

5.
We consider the problems of dientifying the parametersa ij (x), b i (x), c(x) in a 2nd order, linear, uniformly elliptic equation, $$\begin{gathered} - \partial _i (a_{ij} (x)\partial _j u) + b_i (x)\partial _i u + c(x)u = f(x),in\Omega , \hfill \\ \partial _v u|_{\partial \Omega } = \phi (s),s \in \partial \Omega , \hfill \\ \end{gathered} $$ on the basis of measurement data $$u(s) = z(s),s \in B \subset \partial \Omega ,$$ with an equality constraint and inequality constraints on the parameters. The cost functionals are one-sided Gâteaux differentiable with respect to the state variables and the parameters. Using the Duboviskii-Milyutin lemma, we get maximum principles for the identification problems, which are necessary conditions for the existence of optimal parameters.  相似文献   

6.
In this work we study the existence of nontrivial solution for the following class of multivalued quasilinear problems $$\begin{aligned} \displaystyle -\text{ div } ( \phi (|\nabla u|) \nabla u) - b(u)u \in \lambda \partial F(x,u)\;\text{ in }\;\Omega , \quad u=0\; \text{ on }\;\partial \Omega \end{aligned}$$ where $\Omega \subset \mathbb{R }^N$ is a bounded domain, $N\ge 2$ and $\partial F(x,u)$ is a generalized gradient of $F(x,t)$ with respect to $t$ . The main tools utilized are Variational Methods for Locally Lipschitz Functional and a Concentration Compactness Theorem for Orlicz space.  相似文献   

7.
In this paper we study the system $$\begin{aligned}&\min \biggl \{-\mathcal H u_i(x,t)-\psi _i(x,t),u_i(x,t)-\max _{j\ne i}(-c_{i,j}(x,t)+u_j(x,t))\biggr \}=0,\\&u_i(x,T)=g_i(x),\ i\in \{1,\ldots ,d\}, \end{aligned}$$ where \((x,t)\in \mathbb R ^{N}\times [0,T]\) . A special case of this type of system of variational inequalities with terminal data occurs in the context of optimal switching problems. We establish a general comparison principle for viscosity sub- and supersolutions to the system under mild regularity, growth, and structural assumptions on the data, i.e., on the operator \(\mathcal H \) and on continuous functions \(\psi _i\) , \(c_{i,j}\) , and \(g_i\) . A key aspect is that we make no sign assumption on the switching costs \(\{c_{i,j}\}\) and that \(c_{i,j}\) is allowed to depend on \(x\) as well as \(t\) . Using the comparison principle, the existence of a unique viscosity solution \((u_1,\ldots ,u_d)\) to the system is constructed as the limit of an increasing sequence of solutions to associated obstacle problems. Having settled the existence and uniqueness, we subsequently focus on regularity of \((u_1,\ldots ,u_d)\) beyond continuity. In this context, in particular, we assume that \(\mathcal H \) belongs to a class of second-order differential operators of Kolmogorov type of the form: $$\begin{aligned} \mathcal H =\sum _{i,j=1}^m a_{i,j}(x,t)\partial _{x_i x_j}+\sum _{i=1}^m a_i(x,t)\partial _{x_i} +\sum _{i,j=1}^N b_{i,j}x_i\partial _{x_j}+\partial _t, \end{aligned}$$ where \(1\le m\le N\) . The matrix \(\{a_{i,j}(x,t)\}_{i,j=1,\ldots ,m}\) is assumed to be symmetric and uniformly positive definite in \(\mathbb R ^m\) . In particular, uniform ellipticity is only assumed in the first \(m\) coordinate directions, and hence, \(\mathcal H \) may be degenerate.  相似文献   

8.
The following uniformly elliptic equation is considered: $$\sum {\tfrac{\partial }{{\partial x_i }}a_{ij} (x)\tfrac{{\partial u}}{{\partial x_j }} = f(x,u,\nabla u)} , x \in \Omega \subset R^n ,$$ with measurable coefficients. The function f satisfies the condition $$f(x, u, \nabla u) u \geqslant C|u|^{\beta _1 + 1} |\nabla u|^{\beta _1 } , \beta _1 > 0, 0 \leqslant \beta _2 \leqslant 2, \beta _1 + \beta _2 > 1$$ . It is proved that if u(x) is a generalized (in the sense of integral identity) solution in the domain ΩK, where the compactum K has Hausdorff dimension α, and if \(\frac{{2\beta _1 + \beta _2 }}{{\beta _1 + \beta _2 - 1}}< n - \alpha \) , u(x) will be a generalized solution in the domain ω. Moreover, the sufficient removability conditions for the singular set are, in some sense, close to the necessary conditions.  相似文献   

9.
In this paper we will study the equation $$\begin{aligned} \Delta ^2 u=S_2(D^2u),\quad \Omega \subset \mathbb {R}^N, \end{aligned}$$ with \(N=3,\) where \( S_2(D^2u)(x)=\sum _{1\le i , being \(\lambda _i,\) the solutions to the equation $$\begin{aligned} \mathrm{det}\left( \lambda I-D^2u(x)\right) =0, \end{aligned}$$ \(i=1,\dots ,N,\) and \(\Omega \) is a bounded domain with smooth boundary. We deal with several boundary conditions looking for the appropriate framework to get existence and multiplicity of nontrivial solutions. This kind of equation is related to some models of growth, and for this reason it is natural to study the effect of zero order local reaction terms of the type \(F_{\lambda }(x,u)=\lambda |u|^{p-1}u\) , with \(\lambda \in \mathbb {R}\) , \(\lambda >0\) , and \(0 , and also the solvability of the boundary problems with a source term \(f\) satisfying some integrability hypotheses.  相似文献   

10.
The paper describes the general form of an ordinary differential equation of an order n + 1 (n ≥ 1) which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form $f\left( {s,w_{00} \upsilon _0 ,...,\sum\limits_{j = 0}^n {w_{nj\upsilon _j } } } \right) = \sum\limits_{j = 0}^n {w_{n + 1j\upsilon j} + w_{n + 1n + 1} f\left( {x,\upsilon ,\upsilon _1 ,...,\upsilon _n } \right),}$ where $w_{n + 10} = h\left( {s,x,x_1 ,u,u_1 ,...,u_n } \right),w_{n + 11} = g\left( {s,x,x_1 ,...,x_n ,u,u_1 ,...,u_n } \right){\text{ and }}w_{ij} = a_{ij} \left( {x_i ,...,x_{i - j + 1} ,u,u_1 ,...,u_{i - j} } \right)$ for the given functions a ij is solved on $\mathbb{R},u \ne {\text{0}}$ .  相似文献   

11.
In this paper we prove the existence of a nontrivial non-negative radial solution for the quasilinear elliptic problem $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -\nabla \cdot \left[\phi ^{\prime }(|\nabla u|^2)\nabla u \right] +|u|^{\alpha -2}u =|u|^{s-2} u,&x\in \mathbb{R }^{N},\\ u(x) \rightarrow 0, \quad \text{ as} |x|\rightarrow \infty , \end{array} \right. \end{aligned}$$ where $N\ge 2, \phi (t)$ behaves like $t^{q/2}$ for small $t$ and $t^{p/2}$ for large $t, 1< p<q<N, 1<\alpha \le p^* q^{\prime }/p^{\prime }$ and $\max \{q,\alpha \}< s<p^*,$ being $p^*=\frac{pN}{N-p}$ and $p^{\prime }$ and $q^{\prime }$ the conjugate exponents, respectively, of $p$ and $q$ . Our aim is to approach the problem variationally by using the tools of critical points theory in an Orlicz-Sobolev space. A multiplicity result is also given.  相似文献   

12.
Sufficient conditions are derived for the existence of a globally attractive almost periodic solution of a competition system modelled by the nonautonomous Lotka–Volterra delay differential equations $$\begin{gathered} \frac{{{\text{d}}N_1 (t)}}{{{\text{d}}t}} = N_1 (t)\left[ {r_1 (t) - a_{11} (t)N_1 (t - \tau (t)) - a_{12} (t)N_2 (t - \tau (t))} \right], \hfill \\ \frac{{{\text{d}}N_2 (t)}}{{{\text{d}}t}} = N_2 (t)\left[ {r_2 (t) - a_{21} (t)N_1 (t - \tau (t)) - a_{22} (t)N_2 (t - \tau (t))} \right], \hfill \\ \end{gathered} $$ in which $ \tau ,r_i ,a_{ij} (i,j = 1,2) $ are continuous positive almost periodic functions; conditions are also obtained for all positive solutions of the above system to 'oscillate' about the unique almost periodic solution. Some ecobiological consequences of the convergence to almost periodicity and delay induced oscillations are briefly discussed.  相似文献   

13.
In this paper we study integral operators of the form $$T\,f\left( x \right) = \int {k_1 \left( {x - a_1 y} \right)k_2 \left( {x - a_2 y} \right)...k_m \left( {x - a_m y} \right)f\left( y \right)dy} ,$$ $$k_i \left( y \right) = \sum\limits_{j \in Z} {2^{\frac{{jn}}{{q_i }}} } \varphi _{i,j} \left( {2^j y} \right),\,1 \leqq q_i < \infty ,\frac{1}{{q_1 }} + \frac{1}{{q_2 }} + ... + \frac{1}{{q_m }} = 1 - r,$$ $0 \leqq r < 1$ , and $\varphi _{i,j}$ satisfying suitable regularity conditions. We obtain the boundedness of $T:L^p \left( {R^n } \right) \to T:L^q \left( {R^n } \right)$ for $1 < p < \frac{1}{r}$ and $\frac{1}{q} = \frac{1}{p} - r$ .  相似文献   

14.
Let \(x_{n,k}^{(\alpha ,\beta )}\) , \(k=1,\ldots ,n\) , be the zeros of Jacobi polynomials \(P_{n}^{(\alpha ,\beta )}(x)\) arranged in decreasing order on \((-1,1)\) , where \(\alpha ,\beta >-1\) , and \(\theta _{n,k}^{(\alpha ,\beta )}=\arccos x_{n,k}^{(\alpha ,\beta )}\) . Gautschi, in a series of recent papers, conjectured that the inequalities $$n\theta_{n,k}^{(\alpha,\beta)}<(n+1)\theta_{n+1,k}^{(\alpha,\beta)} $$ and $$(n+(\alpha+\beta+3)/2)\theta_{n+1,k}^{(\alpha,\beta)}<(n+(\alpha+\beta+1)/2)\theta_{n,k}^{(\alpha,\beta)}, $$ hold for all \(n\geq 1\) , \(k=1,\ldots ,n\) , and certain values of the parameters \(\alpha \) and \(\beta \) . We establish these conjectures for large domains of the \((\alpha ,\beta )\) -plane by using a Sturmian approach.  相似文献   

15.
In this article, we discuss the recent work of Lin and Zhang on the Liouville system of mean field equations: $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} ({\frac{{h_j}e^{u_{j}}}{\int_{M}{h_{j}e^{u_{j}}}}-{\frac{1}{|M|}}})=0\,\, \quad{\rm on}\, M,$$ where M is a compact Riemann surface and |M| is the area, or $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} \frac{{h_j}e^{u_{j}}}{\int_{\Omega}{h_{j}e^{u_{j}}}}=0\,\, \quad{\rm in}\, \Omega,$$ $${u_j}=0,\,\, \quad{\rm on}\, \partial\Omega, $$ where ?? is a bounded domain in ${\mathbb{R}^2}$ . Among other things, we completely determine the set of non-critical parameters and derive a degree counting formula for these systems.  相似文献   

16.
Let ${\Omega\subset\mathbb{R}^n}$ be open and bounded. For 1 ≤ p < ∞ and 0 ≤ λ < n, we give a characterization of Young measures generated by sequences of functions ${\{{\bf f}_j\}_{j=1}^\infty}$ uniformly bounded in the Morrey space ${L^{p,\lambda}(\Omega;\mathbb{R}^N)}$ with ${\{\left|{{\bf f}_j}\right|^p\}_{j=1}^\infty}$ equiintegrable. We then treat the case that each f j = ? u j for some ${{\bf u}_j\in W^{1,p}(\Omega;\mathbb{R}^N)}$ . As an application of our results, we consider the functional $${\bf u} \mapsto \int\limits_{\Omega}f({\bf x}, {\bf u}({\bf x}), {\bf {\nabla}}{\bf u}({\bf x})){\rm d}{\bf x},$$ and provide conditions that guarantee the existence of a minimizing sequence with gradients uniformly bounded in ${L^{p,\lambda}(\Omega;\mathbb{R}^{N\times n})}$ .  相似文献   

17.
18.
Let $\gamma ,\delta \in \mathbb{R}^n $ with $\gamma _j ,\delta _j \in \{ 0,1\} $ . A comparison pair for a system of equations fi(u1,…,un)=0 (i=1,…,n) is a pair of vectors $v,w \in \mathbb{R}^n ,v \leqslant w$ , such that $$\begin{array}{*{20}c} {\gamma _i f_i (u_1 , \ldots ,u_{i - 1} ,v_i ,u_i + 1, \ldots ,u_n ) \leqslant 0,} \\ {\delta _i f_i (u_1 , \ldots ,u_{i - 1} ,w_i ,u_i + 1, \ldots ,u_n ) \geqslant 0} \\ \end{array} $$ for $\gamma _j u_j \geqslant v_j ,\delta _j u_j \leqslant w_j (j = 1, \ldots ,n)$ . The presence of comparison pairs enables one to essentially weaken the assumptions of the existence theorem. Bibliography: 1 title.  相似文献   

19.
Of concern is the nonlinear hyperbolic problem with nonlinear dynamic boundary conditions $$\left\{ \begin{array}{lll} u_{tt} ={\rm div} (\mathcal{A} \nabla u)-\gamma (x,u_t), && \quad {\rm in} \; (0, \infty) \times \Omega,\\ u(0, \cdot)=f, \, u_t(0,\cdot)=g, && \quad {\rm in}\; \Omega, \\ u_{tt} + \beta \partial^ \mathcal{A}_\nu u+c(x)u+ \delta (x,u_t)-q \beta \Lambda_{\rm LB} u=0,&& \quad {\rm on} \;(0, \infty ) \times \partial \Omega . \end{array}\right. $$ for t ≥  0 and ${x \in \Omega \subset \mathbb{R}^N}$ ; the last equation holds on the boundary . Here ${\mathcal{A}= \{a_{ij}(x)\}_{ij}}$ is a real, hermitian, uniformly positive definite N × N matrix; ${\beta \in C(\partial \Omega)}$ , with β > 0; ${\gamma:\Omega \times \mathbb{R} \to \mathbb{R}; \delta:\partial \Omega \times \mathbb{R} \to \mathbb{R}; \,c:\partial \Omega \to \mathbb{R}; \, q \ge 0, \Lambda_{\rm LB}}$ is the Laplace–Beltrami operator on , and ${\partial^\mathcal{A}_\nu u}$ is the conormal derivative of u with respect to ${\mathcal{A}}$ ; everything is sufficiently regular. We prove explicit stability estimates of the solution u with respect to the coefficients ${\mathcal{A},\,\beta,\,\gamma,\,\delta,\,c,\,q}$ , and the initial conditions fg. Our arguments cover the singular case of a problem with q = 0 which is approximated by problems with positive q.  相似文献   

20.
For Ω a bounded subset of R n,n 2,ψ any function in Ω with values in R∪{±∞}andθ∈W1,(q i)(Ω),let K(q i)ψ,θ(Ω)={v∈W1,(q i)(Ω):vψ,a.e.and v-θ∈W1,(q i)0(Ω}.This paper deals with solutions to K(q i)ψ,θ-obstacle problems for the A-harmonic equation-divA(x,u(x),u(x))=-divf(x)as well as the integral functional I(u;Ω)=Ωf(x,u(x),u(x))dx.Local regularity and local boundedness results are obtained under some coercive and controllable growth conditions on the operator A and some growth conditions on the integrand f.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号