首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The paper describes the general form of an ordinary differential equation of an order n + 1 (n ≥ 1) which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form $f\left( {s,w_{00} \upsilon _0 ,...,\sum\limits_{j = 0}^n {w_{nj\upsilon _j } } } \right) = \sum\limits_{j = 0}^n {w_{n + 1j\upsilon j} + w_{n + 1n + 1} f\left( {x,\upsilon ,\upsilon _1 ,...,\upsilon _n } \right),}$ where $w_{n + 10} = h\left( {s,x,x_1 ,u,u_1 ,...,u_n } \right),w_{n + 11} = g\left( {s,x,x_1 ,...,x_n ,u,u_1 ,...,u_n } \right){\text{ and }}w_{ij} = a_{ij} \left( {x_i ,...,x_{i - j + 1} ,u,u_1 ,...,u_{i - j} } \right)$ for the given functions a ij is solved on $\mathbb{R},u \ne {\text{0}}$ .  相似文献   

2.
For a linear differential equation of the type (1) $$\frac{{dx}}{{dt}} = A_0 x(t) + A_1 x(t - \Delta _1 ) + ... + A_n x(t - \Delta _n )$$ we establish the followingTHEOREM. If $$\overline {\left| {z_1 } \right| = ...\underline{\underline \cup } \left| z \right|_n = 1\sigma \left( {A_0 + \sum\nolimits_{k = 1}^n {z_k A_k } } \right)} \subset \left\{ {\lambda :\operatorname{Re} \lambda< 0} \right\}$$ then system (1) is absolutely asymptotically stable.  相似文献   

3.
Semilinear elliptic equations of the form $$\begin{array}{*{20}c} {\sum\limits_{i,j = 1}^n {(a_{ij} (x)u_{xi} (x))_{x_j } + } f(\lambda ,x,u(x)) = 0,} & {x \in \Omega ,} \\ {u(x) = 0,} & x \\ \end{array} $$ are considered, where λ ε ? is a parameter, Ω ? ? n is a bounded domain andf is a smooth non-linear function. It is shown that for ‘generic’ functionsf, the set of non-trivial solutions (λ,u) consists of a finite, or countable, collection of smooth, 1-dimensional curves and any such solution is either hyperbolic or is a saddle-node bifurcation point of the curve.  相似文献   

4.
The problem of minimizing the functional (A) $${}_a\smallint ^b \varphi (x,y,y',y'')dx$$ under the conditions (B) $$y(a) = a_0 ,y'(a) = a_1 ,y(b) = b_0 ,y'(b) = b_1$$ is replaced by the problem of finding the vector (y1,y2,...,yn?1) on which the sum (C) $$\sum\limits_{\kappa = 0}^n {C_\kappa \varphi (x_\kappa ,y_\kappa ,\left. {\frac{{y_{\kappa + 1} - y_\kappa }}{h},\frac{{y_{\kappa + 1} - 2y_\kappa + y_{\kappa + 1} )}}{{h^2 }}} \right)}$$ takes a minimal value. Under certain conditions on ? andC k it is proved that a solution exists for the difference scheme constructed. The method of differentiation with respect to a parameter is used for the proof.  相似文献   

5.
We give a simple proof of a mean value theorem of I. M. Vinogradov in the following form. Suppose P, n, k, τ are integers, P≥1, n≥2, k≥n (τ+1), τ≥0. Put $$J_{k,n} (P) = \int_0^1 \cdots \int_0^1 {\left| {\sum\nolimits_{x = 1}^P {e^{2\pi i(a_1 x + \cdots + a_n x^n )} } } \right|^{2k} da_1 \ldots da_n .} $$ Then $$J_{k,n} \leqslant n!k^{2n\tau } n^{\sigma n^2 u} \cdot 2^{2n^2 \tau } P^{2k - \Delta } ,$$ where $$\begin{gathered} u = u_\tau = min(n + 1,\tau ), \hfill \\ \Delta = \Delta _\tau = n(n + 1)/2 - (1 - 1/n)^{\tau + 1} n^2 /2. \hfill \\ \end{gathered} $$   相似文献   

6.
Let $\gamma ,\delta \in \mathbb{R}^n $ with $\gamma _j ,\delta _j \in \{ 0,1\} $ . A comparison pair for a system of equations fi(u1,…,un)=0 (i=1,…,n) is a pair of vectors $v,w \in \mathbb{R}^n ,v \leqslant w$ , such that $$\begin{array}{*{20}c} {\gamma _i f_i (u_1 , \ldots ,u_{i - 1} ,v_i ,u_i + 1, \ldots ,u_n ) \leqslant 0,} \\ {\delta _i f_i (u_1 , \ldots ,u_{i - 1} ,w_i ,u_i + 1, \ldots ,u_n ) \geqslant 0} \\ \end{array} $$ for $\gamma _j u_j \geqslant v_j ,\delta _j u_j \leqslant w_j (j = 1, \ldots ,n)$ . The presence of comparison pairs enables one to essentially weaken the assumptions of the existence theorem. Bibliography: 1 title.  相似文献   

7.
The solution of the problem of finding the quantity 1 $$|\vartriangle \mathop n\nolimits_{v_k }^{\sup } | \leqslant 1 1\begin{array}{*{20}c} {1nf} \\ {(k) = 1/_k } \\ {(k = 0, \pm 1. \pm 2, ...)} \\ \end{array} || /^{(n)} (x)||_C ( - \infty ,\infty )'$$ obtained by Subbotin, is extended to the case of formally self-adjoint differential operators with constant coefficients and corresponding generalized differences.  相似文献   

8.
For the linear hyperbolic equations $$\sum\limits_{i,j = 1}^{m + 1} {a_{ij} \left( {x,x_{m + 1} } \right)u_{x_i x_j } + \sum\limits_{i = 1}^{m + 1} {a_i \left( {x,x_{m + 1} } \right)u_{x_i } + c\left( {x,x_{m + 1} } \right)u = 0,x = \left( {x_1 ,...,x_m } \right)} ,} m \geqslant 2,$$ the correctness of multidimensional analogues of the problems of Darboux and Goursat is established and a theorem on the uniqueness of a solution of the Cauchy characteristic problem is proved.  相似文献   

9.
In this paper we prove the following theorem: Suppose that n≥3 and 1≤jn $$(\forall a,b) d(a,b) : = \sum\limits_{\nu = 1}^j { (a_\nu - b_\nu )^2 - \sum\limits_{\nu = j + 1}^n { (a_\nu - b_\nu )^2 .} }$$ If a function f:?n→?n satisfies the condition: (*) $$(\forall x,y \in \mathbb{R}^n ) d(f(x),f(y)) = 0 \Leftrightarrow d(x,y) = 0,$$ then f is affine. Moreover, f preserves distances up to a constant factor C≠0, i.e. d(f(x),f(y))=C·d(x,y) for every x,y. In contrast to Alexandrov's result [1] we do not assume that f is bijective, and we also do not assume that j=n?1. A very important part of our proof will be the discussion of a functional equation.  相似文献   

10.
Для линейных методов суммирования рядов Ф урье (1) $$L_n (f;x) = \frac{1}{\pi }\mathop \smallint \limits_{ - \pi }^\pi f(x + t)\left( {\frac{1}{2} + \sum\limits_{k = 1}^n {\lambda _{k,n} } \cos kt} \right)dt$$ на классах $$C(\varepsilon ) = \{ f:E_n (f) \leqq \varepsilon _n ;\forall n \geqq 0\} ,\varepsilon = \{ \varepsilon _n \} _{n = 0.}^\infty \varepsilon _n \downarrow 0,$$ доказываются:
  1. оценки для порядка р оста норм ∥{Ln∥, если из вестен порядок приближения операторами (1) некоторого классаС (?) (при этом, если опера торы (1) приближают класс С(е) с наилучшим порядком, то находится точная а симптотика возрастания норм {∥ Ln∥);
  2. сравнительные оцен ки порядков приближе ния классовС(?) операторами (1), если известен порядок при ближения ими некотор ого более узкого класса С(?*).
В том случае, когда опе раторы (1) приближают кл асс С(?*) с наилучшим порядком, получаются точные по рядковые оценки для л юбого более широкого класса С(?).  相似文献   

11.
In this article, we discuss the recent work of Lin and Zhang on the Liouville system of mean field equations: $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} ({\frac{{h_j}e^{u_{j}}}{\int_{M}{h_{j}e^{u_{j}}}}-{\frac{1}{|M|}}})=0\,\, \quad{\rm on}\, M,$$ where M is a compact Riemann surface and |M| is the area, or $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} \frac{{h_j}e^{u_{j}}}{\int_{\Omega}{h_{j}e^{u_{j}}}}=0\,\, \quad{\rm in}\, \Omega,$$ $${u_j}=0,\,\, \quad{\rm on}\, \partial\Omega, $$ where ?? is a bounded domain in ${\mathbb{R}^2}$ . Among other things, we completely determine the set of non-critical parameters and derive a degree counting formula for these systems.  相似文献   

12.
Изучается ограничен ность псевдодиффере нциальных операторов на \(L^2 (R^n )\) и на пр остранствах Харди в \(R^n \) . Пусть \(D_k = \{ \xi \in R^n :2^{k - 1} \leqq \left| \xi \right|< 2^k \} , k = 1,2,3, \ldots ,\) и \(D_0 = \{ \xi \in R^n :\left| \xi \right|< 1\} \) . Псевдодиффер енциальный операторP с символом p определяется соотно шением $$Pf(x) = \int\limits_{R^n } {e^{ix \cdot \xi } p(x,\xi )\hat f(\xi )d\xi ,x \in R^n .} $$ Будем говорить, что p пр инадлежит классу \(\bar S_{\varrho ,} {}_\delta (M,N), 0 \leqq \delta ,\varrho \leqq 1\) , ес ли $$\left| {D_x^a p(x,\xi )} \right| \leqq C_a (1 + \left| \xi \right|)^{\delta \left| a \right|} , x,\xi \in R^n ,\left| a \right| \leqq M,$$ и $$\int\limits_{D_k } {\left| {D_x^a D_\xi ^\beta p(x,\xi )} \right|d\xi \leqq C_{a\beta } 2^{kn} 2^{k(\delta |a| - \varrho |\beta |)} , x} \in R^n , k = 0,1,2, \ldots ;|a| \leqq M, |\beta | \leqq N.$$ Изучаются условия, ко торым должны удовлет ворять ?. δ,M иN, чтобы для каждого символа \(p \in \bar S_\varrho , {}_\delta (M,N)\) соответствующий оп ераторP был ограниче н на \(L^2 (R^n )\) . Далее, пусть \(p \in S_\varrho , {}_\delta \) , если дл я всех мультииндексо в а и β выполнено условие $$|D_x^a D_\xi ^\beta p(x,\xi )| \leqq C_{a\beta } (1 + |\xi |)^{\delta |\alpha | - \varrho |\beta |} , x,\xi \in R^n .$$ Доказывается, что при 0≦δ<1 операторP отображ ает пространство Харди \(H^p (R^n )\) в локальное пространство Харди ? p , если символp принадл ежит классуS 1, δ.  相似文献   

13.
For the spectrum of the operator $$u = \sum\nolimits_{j = 1}^n {( - 1)^{m_j } D_j^{2m_j } u + q(x)u,} $$ to be discrete, where the mj are arbitrary positive integers such that \(\sum\nolimits_{j = 1}^n {\tfrac{1}{{2m_j }}< 1} \) , and q(x) ≥ 1, it is necessary and sufficient that \(\int\limits_K {q (x) dx \to \infty } \) , when the cube K tends to infinity while preserving its dimensions.  相似文献   

14.
A maximum principle is obtained for control problems involving a constant time lag τ in both the control and state variables. The problem considered is that of minimizing $$I(x) = \int_{t^0 }^{t^1 } {L (t,x(t), x(t - \tau ), u(t), u(t - \tau )) dt} $$ subject to the constraints 1 $$\begin{gathered} \dot x(t) = f(t,x(t),x(t - \tau ),u(t),u(t - \tau )), \hfill \\ x(t) = \phi (t), u(t) = \eta (t), t^0 - \tau \leqslant t \leqslant t^0 , \hfill \\ \end{gathered} $$ 1 $$\psi _\alpha (t,x(t),x(t - \tau )) \leqslant 0,\alpha = 1, \ldots ,m,$$ 1 $$x^i (t^1 ) = X^i ,i = 1, \ldots ,n$$ . The results are obtained using the method of Hestenes.  相似文献   

15.
Under the Keller?COsserman condition on ${\Sigma_{j=1}^{2}f_{j}}$ , we show the existence of entire positive solutions for the semilinear elliptic system ${\Delta u_{1}+|\nabla u_{1}|=p_{1}(x)f_{1}(u_{1},u_{2}), \Delta u_{2}+|\nabla u_{2}|=p_{2}(x)f_{2}(u_{1},u_{2}),x \in \mathbb{R}^{N}}$ , where ${p_{j}(j=1, 2):\mathbb{R}^{N} \rightarrow [0,\infty)}$ are continuous functions.  相似文献   

16.
For an equation of the form $$\begin{gathered} \frac{{\partial u}}{{\partial t}} - \sum\nolimits_{ij = 1}^n {{\text{ }}\alpha ^{ij} } \frac{{\partial ^2 u}}{{\partial x^i \partial x^j }} + \sum\nolimits_{ij = 1}^n {\beta _j^i x^i } \frac{{\partial u}}{{\partial x^i }} = 0, \hfill \\ {\text{ }}x \in R^n ,{\text{ }}t \in R^1 , \hfill \\ \end{gathered}$$ where α=(αij) is a constant nonnegative matrix andΒ=(Β i i ) is a constant matrix, subject to certain conditions, we construct a fundamental solution, similar in its structure to the fundamental solution of the heat conduction equation; we prove a mean value theorem and show that u(x0, t0) can be represented in the form of the mean value of u(x, t) with a nonnegative density over a level surface of the fundamental solution of the adjoint equation passing through the point (x0, t0); finally, we prove a parabolic maximum principle.  相似文献   

17.
Let 0≤g be a dyadic Hölder continuous function with period 1 and g(0)=1, and let $G(x) = \prod\nolimits_{n = 0}^\infty {g(x/{\text{2}}^n )} $ . In this article we investigate the asymptotic behavior of $\smallint _0^{\rm T} \left| {G(x)} \right|^q dx$ and $\frac{1}{n}\sum\nolimits_{k = 0}^n {\log g(2^k x)} $ using the dynamical system techniques: the pressure function and the variational principle. An algorithm to calculate the pressure is presented. The results are applied to study the regulatiry of wavelets and Bernoulli convolutions.  相似文献   

18.
Simple estimates are obtained for the spectrum of the operator bundle \(R(\lambda ) = \sum\nolimits_{i = 0}^n {A_{n - i} \lambda ^i }\) in terms of estimates of the maximum and minimum eigenvalues of the operators \(\frac{1}{2}(A_{n - i} - A_{n - i}^* )(i = 0,1,2, \ldots n)\) and the norms of the operators \(\frac{1}{2}(A_{n - i} - A_{n - i}^* )(i = 0,1,2, \ldots n)\) We formulate a criterion of the asymptotic stability of the differential equations $$\sum\nolimits_{i = 1}^n {A_{n - i} } \frac{{d^{(i)} x}}{{dt^i }} = 0.$$ We present examples of the stability conditions for equations with n=2 and n=3.  相似文献   

19.
We give sufficient conditions for the existence of global small solutions to the quasilinear dissipative hyperbolic equation $u_{tt} + 2u_t - a_{ij} (u_t ,\nabla u)\partial _i \partial _j u = f$ corresponding to initial values and source terms of sufficiently small size, as well as of small solutions to the corresponding stationary version, i.e. the quasilinear elliptic equation $ - a_{ij} (0,\nabla v)\partial _i \partial _j v = h$ . We then give conditions for the convergence, as t ?? ??, of the solution of the evolution equation to its stationary state.  相似文献   

20.
In this paper, we establish gradient estimates in Morrey spaces and H?lder continuity for weak solutions of the following degenerate elliptic system $$-X_{\alpha}^{\ast}(a_{ij}^{\alpha\beta}(x)X_{\beta}u^{j})=g_{i}-X_{\alpha}^{\ast}f_{i}^{\alpha}(x),$$ where X 1, . . . , X q are real smooth vector fields satisfying H?rmander’s condition, coefficients ${a_{ij}^{\alpha \beta }\in VMO_X \cap L^\infty (\Omega ), \alpha,\beta=1,2, \,.\,.\,.\, ,q, i,j=1,2, \,.\,.\,.\, ,N, X_{\alpha}^{\ast}}$ is the transposed vector field of X α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号