首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
Synthetic control of the mutual arrangement of the cyclometalated ligands (C^N) in Ir(III) dimers, [Ir(C^N)(2)Cl](2), and cationic bis-cyclometalated Ir(III) complexes, [Ir(C^N)(2)(L^L)](+) (L^L = neutral ligand), is described for the first time. Using 1-benzyl-4-(2,4-difluorophenyl)-1H-1,2,3-triazole (HdfptrBz) as a cyclometalating ligand, two different Ir(III) dimers, [Ir(dfptrBz)(2)Cl](2), are synthesized depending on the reaction conditions. At 80 °C, the dimer with an unusual mutual cis-C,C and cis-N,N configuration of the C^N ligands is isolated. In contrast, at higher temperature (140 °C), the geometrical isomer with the common cis-C,C and trans-N,N arrangement of the C^N ligand is obtained. In both cases, an asymmetric bridge, formed by a chloro ligand and two adjacent nitrogens of the triazole ring of one of the cyclometalated ligands, is observed. The dimers are cleaved in coordinating solvents to give the solvento complexes [Ir(dfptrBz)(2)Cl(S)] (S = DMSO or acetonitrile), which maintain the C^N arrangement of the parent dimers. Controlling the C^N ligand arrangement in the dimers allows for the preparation of the first example of geometrical isomers of a cationic bis-cyclometalated Ir(III) complex. Thus, N,N-trans-[Ir(dfptrBz)(2)(dmbpy)](+) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine), with cis-C,C and trans-N,N arrangement of the C^N ligands, as well as N,N-cis-[Ir(dfptrBz)(2)(dmbpy)](+), with cis-C,C and cis-N,N C^N ligand orientation, are synthesized and characterized. Interestingly, both isomers show significantly different photophysical and electroluminescent properties, depending on the mutual arrangement of the C^N ligands. Furthermore, quantum chemical calculations give insight into the observed photophysical experimental data.  相似文献   

2.
The reaction of Ir4(CO)12 with Ph3GeH at 97 degrees C has yielded the new tetrairidium cluster complexes Ir4(CO)7(GePh3)(mu-GePh2)2[mu3-eta3-GePh(C6H4)](mu-H)2 (10) and Ir4(CO)8(GePh3)2(mu-GePh2)4 (11). The structure of 10 consists of a tetrahedral Ir4 cluster with seven terminal CO groups, two bridging GePh2) ligands, an ortho-metallated bridging mu3-eta3-GePh(C6H4) group, a terminal GePh3 ligand, and two bridging hydrido ligands. Compound 11 consists of a planar butterfly arrangement of four iridium atoms with four bridging GePh2 and two terminal GePh3 ligands. The same reaction at 125 degrees C yielded the two new triiridium clusters Ir3(CO)5(GePh3)(mu-GePh2)3(mu3-GePh)(mu-H) (12) and Ir3(CO)6(GePh3)3(mu-GePh2)3 (13). Compound 12 contains a triangular Ir3 cluster with three bridging GePh2), one triply bridging GePh, and one terminal GePh3 ligand. The compound also contains a hydrido ligand that bridges one of the Ir-Ge bonds. Compound 13 contains a triangular Ir3 cluster with three bridging GePh2 and three terminal GePh3 ligands. At 151 degrees C, an additional complex, Ir4H4(CO)4(mu-GePh2)4(mu4-GePh)2 (14), was isolated. Compound 14 consists of an Ir4 square with four bridging GePh2, two quadruply bridging GePh groups, and four terminal hydrido ligands. Compound 12 reacts with CO at 125 degrees C to give the compound Ir3(CO)6(mu-GePh2)3(mu3-GePh) (15). Compound 15 is formed via the loss of the hydrido ligand and the terminal GePh3 ligand and the addition of one carbonyl ligand to 12. All compounds were fully characterized by IR, NMR, single-crystal X-ray diffraction analysis, and elemental analysis.  相似文献   

3.
Several Rh(I) and Ir(I) complexes containing an N-heterocyclic carbene-pyrazolyl chelate ligand have been synthesised. Determination of the single-crystal X-ray structure of the Ir(I) complex showed a novel binding mode with the iridium centre coordinated to two ligands via two carbene donors in preference to one ligand forming the entropically favoured chelate. The hydrogenation activity of several of these complexes was investigated along with that of previously synthesised Rh(I) and Ir(I) complexes containing an analogous phosphine-pyrazolyl chelate.  相似文献   

4.
Unusual reactions are reported, in which the aromatic PNP ligand (PNP = 2,6-bis-(di-tert-butylphosphinomethyl)pyridine) acts in concert with the metal in the activation of H2 and benzene, via facile aromatization/dearomatization processes of the ligand. A new, dearomatized electron-rich (PNP*)Ir(I) complex 2 (PNP* = deprotonated PNP) activates benzene to form the aromatic (PNP)Ir(I)Ph 4, which upon treatment with CO undergoes a surprising oxidation process to form (PNP*)Ir(III)(H)CO 6, involving proton migration from the ligand "arm" to the metal, with concomitant dearomatization. 4 undergoes stereoselective activation of H2 to exclusively form the trans-dihydride 7, rather than the expected cis-dihydride complex. Our evidence, including D-labeling, suggests the possibility that the Ir(I)-Ph complex is transformed to the dearomatized Ir(III)(Ph)(H) (independently prepared at low temperature), which may be the actual intermediate undergoing H2 activation.  相似文献   

5.
An application of the new sterically hindered electron-poor 2-(3,5-bis(trifluoromethyl)phenyl)-4-trifluoromethylpyridine [HC--N] (1) in the one-step high temperature cyclometalation by Ir(III)Cl3 in the presence of Ag(I)OC(O)CF3 resulted in the synthesis of tris-cyclometalated complexes [C--N]2Ir[C--C] (3) and [C--N]3Ir (5). A neutral silver cluster with a repeating unit of hexa-silver groups in an infinite chain of (2) was isolated from the above reaction as well. When this cyclometalation was carried out in trimethylphosphate at lower temperature, bis-cyclometalated derivatives [C--N]2Ir(mu-Cl)2Ir[CN]2 (6), [C--N]2Ir[eta2-(O(C((t)Bu))2CH] (7), and [C--N]2Ir(mu-O-P(OMe)2-O)2Ir[C--N]2 (8) were synthesized. According to X-ray analyses complex (3), while trivalent, contains four cyclometalated single Ir-C bonds. One of the Ir-C bonds, next to the nitrogen atom of the CC pyridinium ligand, was found to be the shortest to date (1.977(4) angstroms) for a single bond between iridium and carbon atoms. The coordination of the C--C ligand in (3) to iridium has a decidedly interesting bonding pattern and can be explained by various formulations. The first one is considering this ligand as a monoanionic chelating ligand, in which the second coordination site arises from a carbene or azomethine ylide. Overall the best single picture may be a dianionic ligand making two normal Ir-C bonds, in which the ligand just happens to contain a pyridinium function that compensates for one negative charge on the iridium. LEDs constructed with compounds (7) and (8) give blue-green emission with peak electroluminescent efficiency of 15 and 2 cd A(-1), respectively. An LED constructed with compound (5) gives a yellowish emission with peak electroluminescent efficiency of 5.5 cd A(-1).  相似文献   

6.
Aiming to develop a highly effective and durable catalyst for high-pressure H2 production from dehydrogenation of formic acid (DFA), the ligand effect on the catalytic activity and stability of Cp*Ir (Cp*:pentamethylcyclopentadienyl anion) complexes were investigated using 5 different kinds of N,N’-bidentate ligands (bipyridine, biimidazoline, pyridyl-imidazoline, pyridyl-pyrazole and picolinamide). The Ir complex with biimidazoline ligand exhibited the highest catalytic activity, but deactivation occurred readily at high pressure. The pyridine moiety in the ligand can enhance the stability of Ir complex catalysts for the high-pressure reaction. The Ir complex catalyst containing pyridyl-imidazoline ligand showed the high activity and best stability under the high-pressure conditions.  相似文献   

7.
Chen TR  Lee HP  Chen JD 《Inorganic chemistry》2011,50(8):3645-3650
The synthesis and structures of a series of cyclometalated iridium(III) complexes based on benzoxazole derivatives and triphenylphospine are reported. These complexes have a general formula (C^N)(2)Ir(Cl)(pph(3)) [where C^N is a monoanionic cyclometalating ligand, dfpbo = (difluorophenyl)benzoxazolato, pbo = 2-phenylbenzoxazolato, nbo = 2-(2-naphthyl)benzoxazolato, and pph(3) is a triphenylphospine ligand]. The complexes (dfpbo)(2)Ir(Cl)(pph(3)) (2a), (pbo)(2)Ir(Cl)(pph(3)) (2b), and (nbo)(2)Ir (Cl)(pph(3)) (2c) have been structurally characterized by X-ray crystallography. Complex 2a shows facile umpolung in the phenyl rings of the arylphosphine ligand and displays a catalytic propensity for water splitting.  相似文献   

8.
Seven useful mixed-ligand complexes in the form of [Ir(terpy)(L)Cl]2+ were prepared and their spectroscopic and electrochemical properties were investigated. The ligands used were terpy = 2,2':6',2'-terpyridine, L = 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 4,4'-diphenyl-2,2'-bipyridine, 1,10-phenanthroline, 5-phenyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 2,3-bis(2-pyridyl)pyrazine. Synthetic methods were developed by a sequential ligand-replacement which occurred in the reaction vessel using a microwave oven. All complexes showed that LUMOs are based on the pi-system contribution of the terpyridine ligand for [Ir(terpy)(bpy)Cl]2+, [Ir(terpy)(dmbpy)Cl]2+, [Ir(terpy)(dpbpy)Cl]2+, [Ir(terpy)(phen)Cl]2+, [Ir(terpy)(dpphen)Cl]2+ and [Ir(terpy)(phphen)Cl]2+. On the other hand, the LUMO in the [Ir(terpy)(bppz)Cl]2+ complex is localized on the pi-system of the bppz ligand, whereas the HOMOs in the iridium complexes are localized on the terpyridine ligand. It was found that Ir(terpy)(L)Cl emits in a fluid solution at room temperature. The ancillary ligands, such as terpy and bpy, have been explored to extend the lifetime of the triplet 3(pi-pi') excited states of Ir(III) terpyridine complexes. Ir(III) terpyridine units with an electron donor (dmbpy) or electron acceptor substituents (terpy, dpbpy, phphen, dpphen and bppz) are found to decrease the energy of the 3LC states for use as photosensitizer molecular components in supramolecular devices. The spectroscopic and electrochemical details are also reported herein.  相似文献   

9.
Three dinuclear iridium(III) complexes consisting of a conjugated bis-tpy type bridging ligand and cyclometallating capping tridentate ligands of the 1,3-di-2-pyridylbenzene family have been prepared (tpy, 2,2',6',2' '-terpyridine). The two tpy units of the bridge are connected via their back-positions (4') either directly or with a p-phenylene or p-biphenylene spacer. The synthesis relies on the reaction between the dinuclear [Ir(dpb)Cl2]2 complex (dpb-H =1,3-dipyridyl-4,6-dimethylbenzene) and the corresponding bis-tpy ligand. Electrochemical measurements afford metal-centered oxidation and ligand-centered reduction potentials; from the oxidation steps, no evidence is obtained for a strong coupling between the two iridium(III) subunits of the dinuclear species. For all complexes, ground-state absorption data in the 380 nm to visible region show a trend which is consistent with the presence of charge-transfer (CT) transitions involving different degrees of electronic delocalization at the bridging ligands. (dpb)Ir(tpy-tpy)Ir(dpb)4+ exhibits an appreciable luminescence at room temperature (phi = 3.0 x 10(-3); tau = 3.3 ns), whereas no emission from the other binuclear complexes is detected. All binuclear complexes luminesce at 77 K, and a metal-to-ligand CT nature for (dpb)Ir(tpy-tpy)Ir(dpb)4+ is suggested, whereas a ligand-centered (LC) emission is proposed for (dpb)Ir(tpy-(ph)2-tpy)Ir(dpb)4+ on the basis of the comparison with the phosphorescence properties of the free bridging ligand, tpy-(ph)2-tpy. Transient absorbance experiments at room temperature afford the absorption spectra and lifetimes of the non-emissive excited states. For (dpb)Ir(tpy-ph-tpy)Ir(dpb)4+ and (dpb)Ir(tpy-(ph)2-tpy)Ir(dpb)4+, the spectra exhibit a broad profile peaking around 780 nm, quite intense in the case of (dpb)Ir(tpy-(ph)2-tpy)Ir(dpb)4+, and lifetimes of 160 and 440 ps, respectively.  相似文献   

10.
Iridium complexes having a pincer‐type gallylene ligand were successfully synthesized utilizing bis(phosphino)terpyridine as an efficient scaffold for the Ir?GaI bond. The stabilization of the gallylene moiety by the pincer‐type structure enabled various reactions at Ir with keeping the gallylene ligand intact, leading to unique structures and reactivities of PGaIP?Ir complexes.  相似文献   

11.
Iridium complexes having a pincer‐type gallylene ligand were successfully synthesized utilizing bis(phosphino)terpyridine as an efficient scaffold for the Ir?GaI bond. The stabilization of the gallylene moiety by the pincer‐type structure enabled various reactions at Ir with keeping the gallylene ligand intact, leading to unique structures and reactivities of PGaIP?Ir complexes.  相似文献   

12.
The Ir(III) compound Tp(Ms')Ir(N2), that contains a pentadentate, doubly metalated 3-mesityl substituted tris(pyrazolyl)borate ligand, induces the cleavage of C-H and C-Cl bonds of CH2Cl2 to yield a highly electrophilic chlorocarbene Ir=C(H)Cl complex.  相似文献   

13.
Reactions of the iridium(III) nitrosyl complex [Ir(NO)Cl2(PPh3)2] (1) with hydrosulfide and arenethiolate anions afforded the square-pyramidal iridium(III) complex [Ir(NO)(SH)2(PPh3)2] (2) with a bent nitrosyl ligand and a series of the square-planar iridium(I) complexes [Ir(NO)(SAr)2(PPh3)] (3a, Ar = C6H2Me3-2,4,6 (Mes); 3b, Ar = C6H3Me2-2,6 (Xy); 3c, Ar = C6H2Pri3-2,4,6) containing a linear nitrosyl ligand, respectively. Complex 1 also reacted with alkanethiolate anions or alkanethiols to give the thiolato-bridged diiridium complexes [Ir(NO)(mu-SPri)(SPri)(PPh3)]2 (4) and [Ir(NO)(mu-SBut)(PPh3)]2 (5). Complex 4 contains two square-pyramidal iridium(III) centers with a bent nitrosyl ligand, whereas 5 contains two tetrahedral iridium(0) centers with a linear nitrosyl ligand and has an Ir-Ir bond. Upon treatment with benzoyl chloride, 3a and 3b were converted into the (diaryl disulfide)- and thiolato-bridged dichlorodiiridium(III) complexes [[IrCl(mu-SC6HnMe4-nCH2)(PPh3)]2(mu-ArSSAr)] (6a, Ar = Mes, n = 2; 6b, Ar = Xy, n = 3) accompanied by a loss of the nitrosyl ligands and cleavage of a C-H bond in an ortho methyl group of the thiolato ligands. Similar treatment of 4 gave the dichlorodiiridium complex [Ir(NO)(PPh3)(mu-SPri)3IrCl2(PPh3)] (7), which has an octahedral dichloroiridium(III) center and a distorted trigonal-bipyramidal Ir(I) atom with a linear nitrosyl ligand. The detailed structures of 3a, 4, 5, 6a, and 7 have been determined by X-ray crystallography.  相似文献   

14.
The cationic iridium complex [Ir(OH(2))(2)(phpy)(2)](+) (phpy = o-phenylpyridine) is among the most efficient mononuclear catalysts for water oxidation. The postulated active species is the oxo complex [Ir(O)(X)(phpy)(2)](n), with X = OH(2) (n = +1), OH(-) (n = 0) or O(2-) (n = -1), depending on the pH. The reactivity of these species has been studied computationally at the DFT(B3LYP) level. The three [Ir(O)(X)(phpy)(2)](n) complexes have an electrophilic Ir(v)-oxo moiety, which yields an O-O bond by undergoing a nucleophilic attack of water in the critical step of the mechanism. In this step, water transfers one proton to either the Ir(V)-oxo moiety or the ancillary X ligand. Five different reaction pathways associated with this acid/base mechanism have been characterized. The calculations show that the proton is preferably accepted by the X ligand, which plays a key role in the reaction. The higher the basicity of X, the lower the energy barrier associated with O-O bond formation. The anionic species, [Ir(O)(2)(phpy)(2)](-), which has the less electrophilic Ir(V)-oxo moiety but the most basic X ligand, promotes O-O bond formation through the lowest energy barrier, 14.5 kcal mol(-1). The other two active species, [Ir(O)(OH)(phpy)(2)] and [Ir(O)(OH(2))(phpy)(2)](+), which have more electrophilic Ir(V)-oxo moieties but less basic X ligands, involve higher energy barriers, 20.2 kcal mol(-1) and 25.9 kcal mol(-1), respectively. These results are in good agreement with experiments showing important pH effects in similar catalytic systems. The theoretical insight given by the present study can be useful in the design of more efficient water oxidation catalysts. The catalytic activity may increase by using ligand scaffolds bearing internal bases.  相似文献   

15.
Two new iridium(III) complexes containing benzothiazol-2-yl carbazole derivative as a cyclometalated ligand (L) and picolinate (pic) or acetylacetonate (acac) as the ancillary ligand, Ir(III) bis(3-(benzothiazol-2-yl)-9-butyl-carbazole)(picolinate) [Ir(L)2(pic)] and Ir(III) bis(3-(benzothiazol-2-yl)-9-butyl-carbazole)(acetylacetonate) [Ir(L)2(acac)], were synthesized and characterized by elemental analysis, 1H NMR, FT-IR, and UV–Vis absorption spectra. Both the iridium(III) complexes emit intense green–yellow emissions, indicating that they are useful for the fabrication of organic light-emitting diodes.  相似文献   

16.
A new phosphorescent dinuclear cationic iridium(III) complex ( Ir1 ) with a donor–acceptor–π‐bridge–acceptor–donor (D? A? π? A? D)‐conjugated oligomer ( L1 ) as a N^N ligand and a triarylboron compound as a C^N ligand has been synthesized. The photophysical and excited‐state properties of Ir1 and L1 were investigated by UV/Vis absorption spectroscopy, photoluminescence spectroscopy, and molecular‐orbital calculations, and they were compared with those of the mononuclear iridium(III) complex [Ir(Bpq)2(bpy)]+PF6? ( Ir0 ). Compared with Ir0 , complex Ir1 shows a more‐intense optical‐absorption capability, especially in the visible‐light region. For example, complex Ir1 shows an intense absorption band that is centered at λ=448 nm with a molar extinction coefficient (ε) of about 104, which is rarely observed for iridium(III) complexes. Complex Ir1 displays highly efficient orange–red phosphorescent emission with an emission wavelength of 606 nm and a quantum efficiency of 0.13 at room temperature. We also investigated the two‐photon‐absorption properties of complexes Ir0 , Ir1 , and L1 . The free ligand ( L1 ) has a relatively small two‐photon absorption cross‐section (δmax=195 GM), but, when complexed with iridium(III) to afford dinuclear complex Ir1 , it exhibits a higher two‐photon‐absorption cross‐section than ligand L1 in the near‐infrared region and an intense two‐photon‐excited phosphorescent emission. The maximum two‐photon‐absorption cross‐section of Ir1 is 481 GM, which is also significantly larger than that of Ir0 . In addition, because the strong B? F interaction between the dimesitylboryl groups and F? ions interrupts the extended π‐conjugation, complex Ir1 can be used as an excellent one‐ and two‐photon‐excited “ON–OFF” phosphorescent probe for F? ions.  相似文献   

17.
Three new bis-cyclometalated iridium(III) complexes, of general formula [Ir(2-phenylpyridine)(2)(L)](+), are reported. The compounds contain a dipyridine-type ligand (L) derived from di-2-pyridylketone (dipyridin-2-ylmethanol, 2,2'-(hydrazonomethylene)dipyridine and 3-hydroxy-3,3-di(pyridine-2-yl)propanenitrile) and were synthesized through two different reaction pathways. The alternative synthetic pathway herein proposed, namely the direct reactions on the complex [Ir(2-phenylpyridine)(2)(2,2'-dipyridylketone)](+), overcame the inconveniences encountered with the standard reaction between the dimeric precursor [Ir(2-phenylpyridine)(2)(μ-Cl)](2) and the ancillary ligands (L). The photophysical characterization of the iridium complexes reveals that modifications on the ancillary ligand introduce large changes in the photophysical behaviour of the complexes. High emission quantum yield is associated with the presence of a saturated carbon between the two pyridyl moieties: [Ir(2-phenylpyridine)(2)(2,2'-dipyridylketone)](+) and [Ir(2-phenylpyridine)(2)(2,2'-(hydrazonomethylene)dipyridine)](+) are extremely low emissive, while [Ir(2-phenylpyridine)(2)(dipyridin-2-ylmethanol)](+) and [Ir(2-phenylpyridine)(2)(3-hydroxy-3,3-di(pyridine-2-yl)propanenitrile)](+) are good photoemitters. DFT and TD-DFT calculations confirmed the mixed LC/MLCT character of the excited states involved in the absorption and emission processes and highlighted the role of the π-conjugation between the two subunits of the ancillary ligand in determining the nature of the LUMO.  相似文献   

18.
The novel phosphinidene complex [Cp*(NHC)Ir=PMes*] (3; NHC=1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) was prepared in high yield from [Cp*(NHC)IrCl(2)] (2) and [LiPHMes*].3 THF. It represents the first example of an NHC ligated transition metal phosphinidene complex. The X-ray crystal structure for 3 is also reported. DFT calculations on the N-heterocyclic carbene containing parent complexes [Cp(NHC)Ir=E] (E=PH, NH, CH(2)) show that the NHC ligand acts as good sigma-donor/weak pi-acceptor ligand and forms strong Ir-C(NHC) single bonds. The Ir=E double bonds result from strong triplet-triplet interactions between [Cp(NHC)Ir] and E.  相似文献   

19.
A series of phosphorescent cyclometalated iridium complexes with 2,5‐diphenylpyridine‐based ligands has been synthesized and characterized to investigate the effect of the simple ligand modification on photophysics, thermostability and electrochemistry. The complexes have the general structure (CN)2Ir(acac), where CN is a monoanionic cyclometalating ligand [e.g. 2,5‐diphenylpyridyl (dppy), 2,5‐di(4‐methoxyphenyl)pyridyl (dmoppy), 2,5‐di(4‐ethoxyphenyl)pyridyl (deoppy) and 2,5‐di(4‐ethylphenyl)pyridyl (deppy)]. The absorption, emission, cyclic voltammetry and thermostability of the complexes were systematically investigated. The (dppy)2Ir(acac) has been characterized using X‐ray crystallography. Calculation on the electronic ground state of (dppy)2Ir(acac) was carried out using B3LYP density functional theory. The highest occupied molecular orbital (HOMO) level is a mixture of Ir and ligand orbitals, while the lowest occupied molecular orbital (LUMO) is predominantly dppy ligand‐based. Electrochemical studies showed the oxidation potentials of (dmoppy)2Ir(acac), (deoppy)2Ir(acac), (deppy)2Ir(acac) were smaller than that of (ppy)2Ir(acac), while the oxidation potential of (dppy)2Ir(acac) was larger relative to (ppy)2Ir(acac). The 10% weight reduction temperatures of these complexes were above that of (ppy)2Ir(acac). All complexes exhibited intense green photoluminescence, which has been attributed to MLCT triplet emission. The maximum emission wavelengths in CH2Cl2 at room temperature were in the range 531–544 nm, which is more red‐shifted than that of (ppy)2Ir(acac). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Six-electron reduction of the perfluoro-sec-butyl ligand in Cp*Ir(PMe3)I(C4F9) with sodium naphthalenide affords the first known example of a transition metal complex of tetrafluorobutatriene, Cp*Ir(PMe3)(C4F4). The free ligand is a highly unstable compound. The compound has been completely characterized by a single-crystal X-ray diffraction study; the center coordinated double bond shows significant elongation, and the flanking fluoroalkenes show significant shortening, as compared to the dimensions in the free ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号