首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and dynamics of the crystal lattice of MeF2 fluorites (Me = Ca, Sr, Ba, and Pb) under external hydrostatic compression (0–3.5 GPa) are calculated within the shell model in the pair potential approximation. The first-order structural phase transition from the cubic to the orthorhombic phase in these crystals under pressure is investigated. The effect of chemical pressure on the BaF2 crystal is analyzed by the simulation of mixed crystals, namely, Ba1?xCaxF2 and Ba1?xSrxF2. It is demonstrated that the supercell method, as applied to the simulation of mixed crystals, results in a lower lattice energy per formula unit as compared to the lattice energy obtained by the virtual-crystal method.  相似文献   

2.
The relationship between the experimental 19F isotropic chemical shift and the 19F isotropic shielding calculated using the gauge including projector augmented-wave (GIPAW) method with PBE functional is investigated in the case of GaF3, InF3, TlF and several AlF3 polymorphs. It is shown that the linear correlation between experimental and DFT-PBE calculated values previously established on alkali, alkaline earth and rare earth of column 3 basic fluorides (Sadoc et al., Phys. Chem. Chem. Phys. 13 (2011) 18539–18550) remains valid in the case of column 13 metal fluorides, indicating that it allows predicting 19F solid state NMR spectra of a broad range of crystalline fluorides with a relatively good accuracy. For the isostructural α-AlF3, GaF3 and InF3 phases, PBE-DFT geometry optimization leads to noticeably overbended M–F–M bond angles and underestimated 27Al, 71Ga and 115In calculated quadrupolar coupling constants. For the studied compounds, whose structures are built of corner shared MF6 octahedra, it is shown that the electric field gradient (EFG) tensor at the cationic sites is not related to distortions of the octahedral units, in contrast to what previously observed for isolated AlF6 octahedra in fluoroaluminates.  相似文献   

3.
Peculiarities of cascade photon emission (CPE) and energy storage in M1?xPrxF2+x (M=Ca, Sr, Ba, x≈0.35) crystals were studied. The investigation of lattice parameters revealed that these solid solutions belong to the fluorite structure type with the lattice constant noticeably different from that of MF2 crystals. Absorption, emission and excitation spectra of M0.65Pr0.35F2.35 were measured at LHeT and RT. As it turned out the typical for 4f2→4f2 transition in Pr3+ emission lines are broadened as compared with the PrF3 crystal. The analysis of the excitation spectra broadening does not allow bringing out the type of the superlattice, which is inherent to the material, but it indicates clearly the simultaneous presence of different types of the Pr centers in mixed crystals. Yet another specific feature is the higher radiation sensitivity of these fluorides relatively PrF3, MF2 and Pr-doped MF2 crystals. Coloration efficiency enhances in direction Ca→Sr→Ba, and the positions of induced absorption band depend on composition of the solid solution. Colorization, thermo-stimulated luminescence and afterglow of the M1?xPrxF2+x crystals denote high radiation sensitivity as compared with M1?xCexF2+x.  相似文献   

4.
The effect of hydrostatic pressure on a BaF2 crystal was studied within the shell model in the pair-wise potential approximation. The structural phase transition from the cubic to orthorhombic phase was simulated. The behavior of the unit-cell parameters of the α-and β-BaF2 phases under hydrostatic pressure (from 0 to 12 GPa) was investigated. The fundamental vibration frequencies of BaF2 under hydrostatic pressure (0–3.5 GPa) were calculated for both phases. The effect of chemical pressure on the BaF2 crystal was studied by simulating Ba1?x MexF2 mixed crystals (Me=Ca, Sr). It was shown that at impurity concentrations up to 15–20 at. % the lattice constant varies in the same way as it does when hydrostatic pressure increases to P c , which corresponds to a phase transition to the orthorhombic phase. The effect of chemical and hydrostatic pressure on BaF2: Eu2+ doped crystals was also studied. The dependence of the absorption and luminescence zero-phonon line shift on the Eu2+-ligand distance was calculated.  相似文献   

5.
Structural phase transitions in WO3 and the stability of cubic ReO3 and MxWO3 lattices are attributed to the screening effect involving W or Re 5d and O 2p states on the lattice vibrations. The presence of the conduction electrons in ReO3 or MxWO3 is shown to suppress this effect and to stabilize the cubic lattice.  相似文献   

6.
The static and dynamic properties of cubic Rb2KInF6 crystals with elpasolite structure are calculated using a nonempirical method. Calculations are performed within a microscopic ionic-crystal model taking into account the deformation and polarization of ions. The deformation parameters of ions are determined by minimizing the total energy of the crystal. The calculated equilibrium lattice parameters agree satisfactorily with the experimental data. It is found that in the cubic phase there are vibrational modes that are unstable everywhere in the Brillouin zone. The eigenvectors of the unstablest mode at the center of the Brillouin zone of the cubic phase are associated with the displacements of F ions and correspond to rotations of InF6 octahedra. Condensation of this mode leads to a tetragonal distortion of the structure. In order to describe the Fm3mI4/m phase transition, an effective Hamiltonian is constructed under the assumption that the soft mode whose eigenvector corresponds to octahedron rotation is local and coupled with homogeneous elastic strains. The parameters of the effective Hamiltonian are determined using the calculated crystal energy for the distorted structures due to soft-mode condensation. The thermodynamic properties of the system with this model Hamiltonian are investigated using the Monte Carlo method. The phase transition temperature is calculated to be 550 K, which is twice its experimental value (283 K). The tetragonal phase remains stable down to T=0 K; the effective Hamiltonian used in this paper thus fails to describe the second phase transition (to the monoclinic phase). Thus, the transition to the tetragonal phase occurs for the most part through octahedron rotations; however, additional degrees of freedom, first of all, the displacements of Rb ions, should be included into the effective Hamiltonian in order to describe the transition to the monoclinic phase.  相似文献   

7.
This paper presents the results of a nonempirical calculation of the static and dynamic properties of K2NaAlF6, K3AlF6, and Na3AlF6 crystals with the elpasolite structure. The calculation is based on a microscopic model of an ionic crystal that allows for the deformability and polarizability of the ions. The deformability parameters of the ions are determined by minimizing the total energy of the crystal. The total energy is regarded as a functional of the electron density, using the local Thomas-Fermi approximation and taking into account exchange (correlation) effects. The results of the calculations of the equilibrium lattice parameters and of the permittivities are in good agreement with the experimental data. Unstable vibrational modes are found in the spectrum of the lattice vibrations, with these modes occupying the phase space in the entire Brillouin zone. Zh. éksp. Teor. Fiz. 114, 1742–1756 (November 1998)  相似文献   

8.
In solid solutions of alkaline-and rare-earth fluorides with a fluorite structure, ions of most elements of the rare-earth (RE) row form hexameric clusters that assimilate the minor component of the solid solutions (fluorine) and build it into the cubic fluorite lattice without changing its shape. An analysis of the EPR spectra of paramagnetic RE ions (Er3+, Tm3+, Yb3+) in clusters of diamagnetic ions (Lu3+, Y3+) confirms their hexagonal structure, which was established when studying the superstructures of the compounds under study. In such a cluster, a RE ion is in a nearly tetragonal crystal field, with the parameters of this field differing radically from those of single cubic and tetragonal RE centers in crystals with a fluorite structure. In particular, this field causes high (close to limiting) values of the g factors of the ground states of the paramagnetic RE ions. Computer simulation is used to determine the atomic structure of a hexameric cluster in MF2 crystals (M = Ca, Sr, Ba). The crystal field and energy spectrum of Er3+, Tm3+, and Yb3+ ions in such clusters are calculated, and the spectroscopic parameters of the ground states of these ions are determined. The calculations confirm the earlier assumption that the unusual EPR spectra of nonstoichiometric fluorite phases are related to RE ions in hexameric clusters.  相似文献   

9.
Raman spectra of light are obtained for HoFe3(BO3)4 and HoAl3(BO3)4 crystals at various temperatures and are used for determining the frequencies of crystal lattice vibrations at the center of the Brillouin zone. It is also found that the HoFe3(BO3)4 crystal exhibits a phase transition at T c ≈ 366 K. The magnetoelectric effect in the paramagnetic phase of these compounds is studied experimentally. The lattice vibration frequencies, elastic and piezoelectric moduli, Born dynamic charges, and the high-frequency permittivity are calculated using the density functional method. A peculiar behavior of the transverse acoustic vibration branch is observed in the Γ → Z direction of the Brillouin zone of the HoFe3(BO3)4 crystal. The electric polarization induced by an external field is estimated using the calculated values of piezoelectric moduli and experimental values of magnetostriction.  相似文献   

10.
X-ray diffraction measurements of the lattice parameters as a function of temperature are reported for the mixed compounds KMn1-xNixF3 and KMn1-xCoxF3 where x 0.10. From the splitting of the cubic 400 Bragg reflections the transition temperatures of the structural phase transitions were determined. In the KMn0.99Co0.01F3 and KMn0.97Ni0.03F3 crystals three structural phase transitions were established. It was concluded that higher admixture quantities lead to a change in phase transition character which appeared to be smeared over a temperature range.  相似文献   

11.
Experimental lattice reflection spectra of Zn1 ? x Cd x Se bulk crystals are interpreted and analyzed for compositions x = 0.08, 0.21, and 0.30 crystallizing in the cubic zinc blende structure and x = 0.45, 0.65, and 0.80 crystallizing in the hexagonal wurtzite structure. The lattice vibration modes for all the compositions are divided, according to their frequency, into ZnSe- and CdSe-like vibrations. On a phase transition at x > 0.3, a marked jump (7–8 cm?1) in the frequency of lattice modes is observed, but the largest changes take places in the mode oscillator strengths. However, the summed oscillator strength of the ZnSe- and CdSe-like vibration modes changes only slightly during the phase transition, which corresponds to the double-mode type of rearrangement of the vibration spectrum of Zn1 ? x Cd x Se solid solutions with varying x. An analysis of the lattice modes is accompanied by the comparison with the parameters of the lattice modes of Zn1 ? x Cd x Se (x = 0–0.55) epitaxial layers grown on a GaAs substrate by molecular-beam epitaxy.  相似文献   

12.
Raman scattering spectra of elpasolite Rb2KScF6 are studied in a wide temperature range including two phase transitions: from the cubic to the tetragonal phase and then to the monoclinic phase. The experimental Raman scattering spectrum is compared with the lattice vibration spectra of these phases calculated using an ab initio approach. A number of anomalies (caused by structural rearrangement during the phase transitions) are revealed and quantitatively analyzed in the ranges of both the intramolecular vibrations of the octahedron molecular ScF6 ions and low-frequency intermolecular lattice vibrations. The interaction between low-frequency intramolecular vibrations and the intermolecular modes is found to be significant, and strong resonance interaction of the rotational soft modes (which are recovered below the phase transition points) with hard low-frequency vibrations of the rubidium ion sublattice is detected. These interactions are shown to substantially complicate the spectra.  相似文献   

13.
The paper reports on the results of ab initio calculations of the static and dynamic properties of the LaMnO3 crystal with a perovskite structure in the cubic, rhombohedral, and orthorhombic phases. The calculations are performed within the ionic crystal model, which takes into account the deformability and polarizability of the ions. It is revealed that the spectrum of lattice vibrations in the cubic phase contains unstable vibrational modes, which occupy the phase space in the entire Brillouin zone. The eigenvectors of the softest mode at the boundary point R of the Brillouin zone are associated with the displacements of the oxygen ions and correspond to the “rotation” of the MnO6 octahedron. The condensation of one, two, and three components of this mode leads to the tetragonal, orthorhombic, and rhombohedral distortions of the structure. The structural phase transition is described in terms of the local mode approximation with the use of the double perovskite unit cell, in which the MnO6 octahedron is explicitly separated. The parameters of the model Hamiltonian are determined. The static properties are investigated by the Monte Carlo method. The calculated temperature of the phase transition from the cubic phase (9800 K) is considerably higher than the melting temperature of the crystal under investigation. The calculated frequencies of long-wavelength lattice vibrations in the experimentally observed orthorhombic and rhombohedral phases are in reasonable agreement with experimental data.  相似文献   

14.
Zr1−xMxW2O8−y (M=Sc, In and Y) solid solutions substituted up to x=0.04 for Zr(IV) sites by M(III) ions were synthesized by a solid-state reaction. X-ray diffraction experiments from 90 to 560 K revealed that all solid solutions had a cubic crystal structure and showed negative thermal expansion coefficients. The lattice parameters of Zr1−xMxW2O8−y were smaller than that of ZrW2O8 probably due to oxygen defects, though the ionic radii of substituted M3+ ions were larger than that of Zr4+. Order-disorder phase transition temperatures of the substituted samples drastically decreased in the order of Y, In and Sc compared to the percolation theory, and decreased with increasing M content.  相似文献   

15.
The specific features of diffuse X-ray scattering in BaTiO3, KNbO3, and PbTiP3 perovskite crystals have been investigated. The former two perovskite compounds in cubic, tetragonal, and orthorhombic phases exhibit anomalous sheets due to diffuse X-ray scattering, whereas no similar sheets are observed in the case of diffuse X-ray scattering in PbTiO3. For these compounds, the phonon spectra are calculated in the quasi-harmonic approximation within the polarizable-shell model, and the mechanism of stabilization of the soft mode above the temperature of the phase transition to the ferroelectric state is considered. It is demonstrated that, in the cubic phase of BaTiO3 and KNbO3 crystals, there exist quasi-one-dimensional “soft” modes of vibrations of ions in M-O-M-O- chains, where M = Ti or Nb. In PbTiO3, this feature of the soft mode has not been revealed. The pair correlation functions of simultaneous atomic displacements in BaTiO3, KNbO3, and PbTiO3 are determined and used to calculate the intensity of diffuse X-ray scattering. The results obtained are in good agreement with experimental data. This is a strong argument in support of the hypothesis that the specific features of diffuse scattering are associated with the existence of quasi-one-dimensional correlations of atomic displacements in the soft optical mode and that the ferroelectric transition in perovskites is a displacive ferroelectric phase transition. The possible influence of the specific features revealed in the phonon spectra of the perovskite crystals on the processes of nuclear magnetic resonance and X-ray absorption (extended X-ray absorption fine structure spectra) is briefly discussed.  相似文献   

16.
The Raman spectra of the elpasolite (Rb2KInF6) crystal have been studied in the pressure range from 0 to 5.3 GPa at a temperature of 295 K. A phase transition at a pressure of approximately 0.9 GPa has been found. An analysis of the variations in the spectral parameters has led to the conclusion that the phase transition to a distorted phase is accompanied by the doubling of the volume of the primitive cell of the initial cubic phase. Numerical calculations of the lattice dynamics in the Rb2KInF6 crystal have been performed. The numerical simulation has established that the phase transition at a pressure of 0.9 GPa is associated with condensation of the F lg mode. A probable high-pressure phase is the phase with space group C2/m.  相似文献   

17.
Static computer simulation techniques have been employed for structural investigation of the La1−xSrxVO3 series. Potential parameters for V3+-O2− and V4+-O2− have been derived which reproduces the crystal structures of end members with sufficient accuracy. Variations of lattice parameters and bond distances with Sr concentration have been studied. The calculated lattice parameters decrease with increase in the Sr concentration. A structural phase transition from orthorhombic to cubic is observed at 50% Sr doping level.  相似文献   

18.
Differential gain spectra in the range 295–335 nm were measured in crystals of scheelite structure LiY1 ? x Lu x F4 (x = 0–1), doped by Ce3+ ions. It is shown that variation of Lu3+ and Y3+ ions relative content in LiY1 ? x Lu x F4 crystals allows to manipulate the spectral width of the amplification band. Cross-sections of excited-state absorption at the wavelengths of Ce3+ luminescence, probability ratios of formation and thermal destruction of color centers depending on the Y3+ ions content in LiY1 ? x Lu x F4 crystals were estimated. Even better gain characteristics have been demonstrated by LiLuF4:Ce3+, doped by Yb3+ ions. The highest optical gain coefficient with a wide amplification band among studied samples was observed in LiLuF4:Ce3+ crystal, codoped by Yb3+ ions.  相似文献   

19.
The infrared absorption spectra of the oxyfluoride Rb2KMoO3F3 have been measured in the frequency range corresponding to stretching vibrations of the Mo-O anion octahedron with the purpose of clarifying their role in the phase transition. A semi-empirical calculation of two possible configurations of quasioctahedral MoO3F3 groups has been performed. The results of the investigations have demonstrated that some octahedra in the crystal structure change the local symmetry from C 3v to C 2v due to the phase transition (T = 197 K).  相似文献   

20.
The stability of the pseudobinary phases obtained by partial substitution of Ni with Cu, Ag or Au in the cubic Laves phase CeNi2, or by partial substitution of Cu with Ni in the orthorhombic compound CeCu2 has been investigated. No solid solubility of Cu, Ag and Au in the CeNi2 cubic lattice could be detected. In contrast, pseudobinary orthorhombic phases, corresponding to the formula CeCus2?xNix, exist over the range x = 0 to 1. For these phases, crystal structures and magnetic properties have been determined. In every case, the electronic configuration of cerium appears to be unaffected to the Ni content, and corresponds to the trivalent state. The Ni atoms are in a non-magnetic state. The magnetic susceptibility of CeCu2 in the region from 530 to 900 K shows anomalous behaviour, which should be due to a metamagnetic transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号