首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
YVO4:Yb3+,Er3+; YVO4:Yb3+,Tm3+; and YVO4:Yb3+,Er3+,Tm3+ were all synthesized via sol-gel method with a subsequent thermal treatment. Specifically, YVO4:Yb3+,Er3+,Tm3+ phosphors were prepared with different annealing temperatures to study the influence of temperature. The transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffractometer (XRD), and photoluminescent (PL) spectrofluorometer were used to investigate the morphology, crystal structure, and up-conversion luminescent properties of all samples. In summary, all samples were granular-like nanoparticles and well crystallized with the same tetragonal phase as YVO4. Under the irradiation at 980 nm, YVO4:Yb3+,Er3+ phosphors can generate green emission at 525 and 553 nm and red emission at 657 nm, while YVO4:Yb3+,Tm3+ phosphors can generate blue emission at 476 nm, red emission at 648 nm, and near-infrared emission at 800 nm. Notably, YVO4:Yb3+,Er3+,Tm3+ samples can exhibit green emission, blue emission, red emission, and near-infrared emission at the same time, which might endow the as-prepared samples with potential applications in many fields, such as luminous paint, infrared detection, and biological label.  相似文献   

2.
Thermal quenching of interconfigurational 5d-4f luminescence of Er3+ and Tm3+ ions in BaY2F8 crystals is studied in the temperature range of 330–790 K. The quenching temperatures are ~575 and ~550 K for Er3+ and Tm3+, respectively. It is shown that quenching of 5d-4f luminescence of Tm3+ ions is caused by thermally stimulated ionization of 5d electrons to the conduction band.  相似文献   

3.
The local structure of Tm2+ and Yb3+ cubic impurity centers in MeF2: Tm2+ and MeF2: Yb3+ (Me = Ca, Sr, Ba) fluoride crystals, as well as Yb3+ trigonal and tetragonal impurity centers in MeF2: Yb 3+ crystals, is calculated within the shell model in the pair potential approximation.  相似文献   

4.
This paper reports on the results of the investigation into the intensities of the f-f transitions of Nd3+, Er3+, and Tm3+ ions in calcium niobium gallium garnet (CNGG) crystals. The values of the oscillator strengths and line strengths obtained for hypersensitive transitions and the intensity parameters Ω t of the rare-earth ions in the CNGG crystals are compared with the corresponding quantities for crystals of other garnets and some oxide and fluoride crystals. The assumption is made that an increase in the oscillator strengths and line strengths for the hypersensitive transitions and the intensity parameters Ω2 of the Nd, Er, and Tm ions in the CNGG crystals as compared to those for crystals of other garnets is associated with the specific features revealed in the crystal structure of the calcium niobium gallium garnet, in particular, with the lowering of the symmetry of the positions occupied by rare-earth ions in the crystal structure.  相似文献   

5.
Electron paramagnetic resonance (EPR) of the mixed fluorite crystals with the general formula (MeF2)1?x?y (REF3) x (RF3) y (Me = Ca, Sr, Ba; R = Y, La, Lu; RE—paramagnetic trivalent rare-earth ions) were studied comprehensively by different authors and several structural models of paramagnetic centers were considered. However, a lot of details of EPR spectra still remain unexplained. In this work some modifications of the simplest models are proposed which allow explaining adequately the variety of the tetragonal centers in crystals grown under the different conditions. The calculated from the proposed models components of g-factors for Ce3+, Nd3+, Sm3+, Er3+ ions are in a good agreement with the experimental values.  相似文献   

6.
The EPR spectra of rare-earth Er3+ ions in a polycrystalline corundum α-Al2O3 synthesized by the sol-gel technology were revealed. It is shown that the EPR spectra belong to the Er3+ ions in the ground state corresponding to the lower Stark sublevel of the 4 I 15/2 term and can be described by the spin Hamiltonian of axial symmetry with an effective spin S = 1/2 and the g tensor with components g = 12.176 and g = 4.14. The average value of the g tensor (〈g〉 = 6.82) corresponds to the Γ7 state in a cubic field. Erbium is assumed to substitute for aluminum in the Al2O3 corundum crystal. The local symmetry C 3 of the Al3+ ion remains despite the pronounced expansion of the lattice around the Er3+ ion.  相似文献   

7.
郭琳娜  王育华 《物理学报》2011,60(2):27803-027803
采用化学共沉淀法制备了系列Y1.98-2xYb2x Er0.02SiO5(0.00≤x≤0.15)以及Y1.736Yb0.24Er0.02Tm0.004SiO5上转换发光材料,比较了室温下Y1.98-2xYb2x Er0.02 SiO5 (x=0.00,0.08)样品在400—1600 nm范围内的吸收光谱,测量了所有样品在976 nm OPO激光器激发下的上转换发射光谱,以及Er3+离子4S3/2(4F9/2)→4I15/2,Tm3+离子1G43H6荧光衰减曲线和不同激发功率下的上转换蓝光发射强度,从而分析讨论了Er3+,Tm3+在Y2SiO5中的上转换发光机理.研究结果表明:在1250 ℃相对较低的温度下合成了X2型单斜晶系Y2SiO5 ∶Ln3+(Ln3+=Er3+,Yb3+,Tm3+),Yb3+的敏化显著增强了样品在976 nm附近的吸收能力,并大幅度加宽了该处的吸收带.分析上转换发射光谱发现:上转换绿光和红光强度都随着Yb3+浓度的增加先增强后减弱,但红光的猝灭浓度较高,归因于Er3+→Yb3+反向能量传递ETU4和Yb3+→Er3+正向能量传递ETU3过程的发生;上转换蓝光发射是三光子吸收过程,是通过Yb3+,Tm3+之间三次声子辅助的能量转移方式实现的. 关键词: 上转换 共沉淀 2SiO5∶Er3+')" href="#">Y2SiO5∶Er3+ 3+')" href="#">Yb3+ 3+')" href="#">Tm3+  相似文献   

8.
Yb3+:Er3+:Tm3+ co-doped borosilicate glasses are prepared.Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared,which are excited by a 978-nm laser diode,are measured,and the mechanisms of energy transfer among Yb3+,Er3+ and Tm3+ ions are discussed.The results show that there is an unexpected wavelength at 900-nm emission from Yb3+ Stark splitting levels to pump Tm3+ ions and there exists an optimum pump power.The concentration of the Tm3+ dopant gives rise to a prominent effect on the intensity of visible and near-infrared emissions for the Yb3+:Er3+:Tm3+ co-doped borosilicate glasses.  相似文献   

9.
Doping of GaN crystals prepared by various methods (HVPE and MOCVD) with various degrees of perfection of the mosaic structure, using rare-earth (RE) ions has been studied. An analysis of the shape of the photoluminescence spectra obtained before and after the doping showed that, as the defect concentration decreases, the intracenter f-f transitions characteristic of RE ions, at 1.54 and 0.54 μm in Er3+ and 0.72 μm in Sm2+, become observable. The intracenter f-f transitions of RE ions are seen, as a rule, in epitaxial layers with well-aggregated and relaxed domains and are absent in the case of a mosaic structure containing domains in the near-surface part of the epitaxial layer that are not fully coalesced. RE doping of the crystals under study was observed to initiate defect gettering. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 5, 2004, pp. 814–819. Original Russian Text Copyright ? 2004 by Krivolapchuk, Lundin, Mezdrogina, Nasonov, Rodin, Shmidt.  相似文献   

10.
The results of observation and simulation of the superhyperfine (ligand hyperfine) structure (SHFS) of the electron paramagnetic resonance (EPR) spectra of rare-earth and uranium impurity ions in dielectric crystals have been systematized. The resolved SHFS of the EPR spectra of doped cubic crystals (with the fluorite and perovskite structures) has been observed for orientations of a constant magnetic field along the crystallographic axes. Most attention has been paid to tetragonal double fluorides LiRF4 (R = Y, Lu, Tm), in which the SHFS of the EPR spectra has also been found for intermediate orientations of the magnetic field. For the LiYF4: Nd3+ single crystal, the splitting of optical spectral lines due to the interaction of Nd3+ ions with nuclear magnetic moments of the nearest neighbor fluorine ions has been observed for the first time. The Van Vleck paramagnet LiTmF4: U3+ is characterized by the SHFS with clearly distinguishable components due to the interaction of uranium ions both with nuclei of the fluorine ions and with enhanced magnetic moments of the thulium nuclei. The SHFS envelopes of the EPR spectra of Yb3+, Ce3+, Nd3+, and U3+ ions in LiYF4 and LiLuF4 crystals are well reproduced by numerical calculations based on the microscopic model using only three fitting parameters: the width of transitions between the electron-nuclear sublevels of the complex containing the paramagnetic ion and nuclei of the ligands and two constants of covalent bonding of the f electrons with 2s and 2p electrons of the nearest neighbor fluorine ions.  相似文献   

11.
《Current Applied Physics》2019,19(6):739-744
In this article, β-NaLuF4:Yb3+/Tm3+/Er3+ were synthesized by thermal decomposition technique. Yb3+/Tm3+/Er3+ has been firstly manifested to fabricate the microfibers after co-doping with polymer solution. The guiding performance of a microfiber was observed under 980 nm excitation source to prove that it could be used as an active and passive waveguides. The characteristics of optical thermal sensing of Tm3+ and Er3+ ions in a single microfiber were demonstrated. The FIR method was utilized to evaluate the sensitivity of a single microfiber and maximum sensitivity of activator ions in a microfiber was achieved as 0.00124 and 0.00311 K-1 with temperature ranging from 303 to 363 K, respectively. Our results suggest that a single microfiber has good sensing stability and has potential applications in the field of thermometry.  相似文献   

12.
Using electron paramagnetic resonance (EPR) spectroscopy, we have shown that, upon mecha- noactivated doping of powders of compounds CaF2, SrF2, and BaF2 with Er3+ ions, impurity centers of single erbium ions with cubic symmetry are formed. Investigations of dependences of EPR spectra intensities on the particle size show that the process of mechanochemical doping with Er3+ ions proceeds differently for CaF2, SrF2, and BaF2 host matrices. In the case of CaF2, impurity centers are localized in a very thin near-surface layer of CaF2 particles, in SrF2, the impurity is distributed over the volume of particles, while, in BaF2, there is a layer of a finite thickness for which the probability of doping in the course of mechanosynthesis is very small and the impurity of the rare-earth element is localized in the core of large particles. These data can be explained assuming that the result of mechanosynthesis of particles of fluorides with a fluorite structure doped with Er3+ ions at room temperature is governed by two processes—mechanoactivated diffusion of rare-earth ions into particles and segregation of impurity ions at grain boundaries. In this case, the typical scales for compounds CaF2, SrF2, and BaF2 considerably differ from each other.  相似文献   

13.
In this paper, we report the near-infrared luminescence from the Er3+/Yb3+, Tm3+/Yb3+, Er3+/Tm3+ and Nd3+ ions-doped TeO2-ZnO-B2O3-Li2O-Na2O glasses for optical amplification. The X-ray diffraction (XRD) and differential scanning calorimetry (DSC) profiles of the host glass matrix have been carried out. From the DSC thermogram, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The near-infrared spectra of Er3+/Yb3+, Tm3+/Yb3+, Er3+/Tm3+ and Nd3+ ions-doped glasses have shown full-width at half-maxima (FWHM) around 58, 127, 87 and 35 nm, respectively. These glasses with better thermal stability and broad near-infrared emissions should have potential applications in broadly tunable laser sources and broadband optical amplification at low-loss telecommunication windows.  相似文献   

14.
By conventional high-temperature melting method, Yb3+/Er3+/Tm3+ co-doped phosphate glass was synthesized. After annealing the precursor glass, the phosphate glass ceramic (GC) was obtained. By measuring the X-ray diffraction (XRD) spectrum, it is proved that the LiYbP4O12 and Li6P6O18 nano-crystals have existed in the phosphate GC. The up-conversion (UC) emission intensity of the GC is obvious stronger compared to that of the glass. The reason is that the shorter distance between rare earth ions in the glass ceramic increases the energy transitions from the sensitized ions (Yb3+) to the luminous ions (Er3+ and Tm3+). By studying the dependence of UC emissions on the pump power, the 523 and 546 nm green emissions of Er3+ ions in the glass are two-photon processes. But in the glass ceramic, they are two/three-photon processes. The phenomenon implies that a three-photon process has participated in the population of the two green emissions. Using Dexter theory, we discuss the energy transitions of Er3+ and Tm3+. The results indicate the energy transition of Tm3+ to Er3+ is very strong in the GC, which changes the population mechanism of UC emissions of Er3+.  相似文献   

15.
The up-conversion luminescence of Er3+ from the 2H11/2, 4S3/2, and 4F9/2 levels in nanocrystals of Y0.95(1?x)Yb0.95xEr0.05PO4 (x = 0, 0.3, 0.5, 0.7, 1) orthophosphates activated with Er3+ ions has been studied under the excitation of Yb3+ ions to the 2F5/2 level by 972-nm cw laser radiation. Broadband radiation in the wavelength range of 370–900 nm has been observed at certain power densities of exciting laser radiation; this broadband radiation is absent in the case of excitation of the powders under study by pulsed laser radiation with a wavelength of 972 nm at a pulse repetition frequency of 10 Hz and a duration of a pulse of 15 ns. Experimental data indicating that this radiation is thermal in nature have been presented.  相似文献   

16.
A spectroscopic characterization was carried out to identify crystal-field levels for magnetic-dipole transitions of Yb3+ ions located in the Y3+ dodecahedral S4 crystallographic site in YLiF4 (YLF) crystals which were grown either by the Czochralski technique or by the laser heated pedestal growth (LHPG) technique. The concentration dependence of the measured decay time of the 2F5/2 excited level of Yb3+ was analysed in order to understand relevant concentration quenching mechanisms. Under Yb3+ ion infrared pumping, self-trapping and up-conversion non-radiative energy transfer to trace rare-earth impurities (Er3+, Tm3+) has been observed over the visible region and interpreted by a limited-diffusion process within the Yb3+ doping ion subsystem to the impurities. The principal parameters useful for a theoretical approach for potential laser applications of Yb3+-doped YLiF4 crystals have also been given.  相似文献   

17.
The intensity of the blue emission of infrared-excited Yb3+, Tm3+-doped compounds varies in the same way with the host lattice as that of the green emission of infrared-excited Yb3+, Er3+-doped compounds. For both emissions, the highest intensity is obtained in the lattice α-NaYF4. The emission spectrum of α-NaYF4:Yb3+, Tm3+ shows a relatively high blue-to-red intensity ratio.  相似文献   

18.
Lanthanide (Ln3+) doped BaYF5 (Ln=Yb3+, Er3+, Tm3+) nanocrystals (NCs) with a mean size of approximately 10 nm are synthesized by a solvothermal method using oleic acid as a stabilizing agent at 210 °C. The size of BaYF5 NCs can be controlled by simply tuning the reaction parameters such as reaction temperature, reaction time and the molar ratio of F/Y3+. The detailed structure investigation reveals that the as-synthesized BaYF5 NCs are in the cubic structure with space group Fm3¯m instead of the reported tetragonal structure. Ln3+ cations occupy crystal lattice positions with lower point symmetry, which may lead to high upconversion efficiency under the excitation of a 980 nm diode laser. By adjusting the dopant concentrations of Yb3+, Er3+ and Tm3+, intense near-infrared, blue, yellow and white upconversion emissions are readily realized, respectively. The desirable property of the ultrasmall monodisperse NCs makes it the promising material for the applications in miniaturized solid-state light sources, multicolor three-dimensional display devices and fluorescent labels for biomedicine imaging.  相似文献   

19.
Electron paramagnetic resonance (EPR) spectra of impurity Yb3+ ions (about 0.1 at.%) in mixed crystals BaF2(1-x) plus LaF3(x) have been investigated for different values of the concentrationx at a frequency of about 9.5 GHz by both continuous-wave (CW) EPR and electron spin echo methods. A spectrum of trigonal symmetry with a complex hyperfine structure is observed in “pure” BaF2:Yb3+ (x=0). Upon admixture of small amounts of LaF3 (x=0.001), additional EPR lines arise with intensities increasing with the increase ofx up to 0.005. These lines are attributed to trigonal centers including two rare-earth ions and two compensating fluorine ions. A further increase ofx results in a decrease of the total EPR spectrum intensity, and atx≥0.05 the CW resonance becomes practically unobservable. This may be due to the formation of rare-earth ion clusters with paramagnetic Yb3+ ions occurring in domains with a disordered structure of surroundings resulting in very broad EPR lines, which cannot be registered by CW EPR. Indeed, very broad (not less than 1 KG) EPR lines were observed by the electron spin echo method for concentrationsx<-0.02.  相似文献   

20.
Spectroscopic properties of YPO4 nanoparticles doped with Yb3+, Tm3+, and Er3+ ions have been studied in detail. These multiemitting materials are promising not only for photonic or electronic use but especially for anticounterfeiting applications. The nanopowders are synthesized by the facile coprecipitation method with annealing in the air atmosphere at 1000 °C. The structural and morphological studies reveal pure tetragonal nanocrystallites with an average size of 20–30 nm. Most interestingly, under NIR excitation, the samples exhibit intense upconversion (UC) luminescence where the color can be tuned by changing the laser source, switching the excitation wavelengths between 800, 975, 1208, and 1532 nm, double-wavelength excitation, and by changing laser power density. As a result, a very high color shift, being the result of intensity changes in the emission bands of Er3+ (green and red) and Tm3+ (blue and red) is obtained. The luminescence lifetimes, temporal evolution, and the pump power dependences are also measured to propose the mechanisms responsible for the observed UC emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号