首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A nonlocal Euler–Bernoulli elastic beam model is developed for the vibration and instability of tubular micro- and nano-beams conveying fluid using the theory of nonlocal elasticity. Based on the Newtonian method, the equation of motion is derived, in which the effect of small length scale is incorporated. With this nonlocal beam model, the natural frequencies and critical flow velocities for the case of simply supported system and for the case of cantilevered system are obtained. The effect of small length scale (i.e., the nonlocal parameter) on the properties of vibrations is discussed. It is demonstrated that the natural frequencies are generally decreased with increasing values of nonlocal parameter, both for the supported and cantilevered systems. More significantly, the effect of small length scale on the critical flow velocities is visible for fluid-conveying beams with nano-scale length; however, this effect may be neglected for micro-beams conveying fluid.  相似文献   

2.
A nonlocal Euler–Bernoulli elastic beam model is developed for the vibration and instability of tubular micro- and nano-beams conveying fluid using the theory of nonlocal elasticity. Based on the Newtonian method, the equation of motion is derived, in which the effect of small length scale is incorporated. With this nonlocal beam model, the natural frequencies and critical flow velocities for the case of simply supported system and for the case of cantilevered system are obtained. The effect of small length scale (i.e., the nonlocal parameter) on the properties of vibrations is discussed. It is demonstrated that the natural frequencies are generally decreased with increasing values of nonlocal parameter, both for the supported and cantilevered systems. More significantly, the effect of small length scale on the critical flow velocities is visible for fluid-conveying beams with nano-scale length; however, this effect may be neglected for micro-beams conveying fluid.  相似文献   

3.
Nowadays, carbon nanotubes (CNT) play an important role in practical applications in fluidic devices. To this end, researchers have studied various aspects of vibration analysis of a behavior of CNT conveying fluid. In this paper, based on nonlocal elasticity theory, single-walled carbon nanotube (SWCNT) is simulated. To investigate and analyze the effect of internal fluid flow on the longitudinal vibration and stability of SWCNT, the equation of motion for longitudinal vibration is obtained by using Navier-Stokes equations. In the governing equation of motion, the interaction of fluid-structure, dynamic and fluid flow velocity along the axial coordinate of the nanotube and the nano-scale effect of the structure are considered. To solve the nonlocal longitudinal vibration equation, the approximate Galerkin method is employed and appropriate simply supported boundary conditions are applied. The results show that the axial vibrations of the nanotubesstrongly depend on the small-size effect. In addition, the fluid flowing in nanotube causes a decrease in the natural frequency of the system. It is obvious that the system natural frequencies reach zero at lower critical flow velocities as the wave number increases. Moreover, the critical flow velocity decreases as the nonlocal parameter increases.  相似文献   

4.
A new elastic nonlocal stress model and analytical solutions are developed for torsional dynamic behaviors of circular nanorods/nanotubes. Unlike the previous approaches which directly substitute the nonlocal stress into the equations of motion, this new model begins with the derivation of strain energy using the nonlocal stress and by considering the nonlinear history of straining. The variational principle is applied to derive an infinite-order differential nonlocal equation of motion and the corresponding higher-order boundary conditions which contain a nonlocal nanoscale parameter. Subsequently, free torsional vibration of nanorods/nanotubes and axially moving nanorods/nanotubes are investigated in detail. Unlike the previous conclusions of reduced vibration frequency, the solutions indicate that natural frequency for free torsional vibration increases with increasing nonlocal nanoscale. Furthermore, the critical speed for torsional vibration of axially moving nanorods/nanotubes is derived and it is concluded that this critical speed is significantly influenced by the nonlocal nanoscale.  相似文献   

5.
In this paper, natural frequency and nonlinear response of carbon nano-tube (CNT) conveying fluid based on the coupling of nonlocal theory and von Karman's stretching have been obtained. The homotopy analysis method (HAM) has been used for solving nonlinear differential equation of system and convergence region of approach presented. Effects of mid-plane stretching, nonlocal parameter and their coupling in the model have been investigated. It has been concluded that stretching effect is significant only for higher-amplitude initial excitations and lower beam aspect ratios. Moreover, by including the slip boundary condition, the effect of nano-size flow has been revealed in the nonlinear vibration model. We have concluded that small-size effects of nano-tube and nano-flow have impressed critical velocity of fluid significantly specially for gas fluid. Analytical results obtained from HAM solution show satisfactory agreement with numerical solutions such as Runge–Kutta. Having an analytical approach, we have been able to investigate the unbounded growth of amplitude of vibrations for flow velocities near the critical value. Moreover, by employing the second-order approximation of Galerkin's method, the estimated natural frequency of the first mode is verified. The obtained results would indicate that the effects of higher mode on the first natural frequency are negligible for the doubly-clamped CNT.  相似文献   

6.
The flexural vibration of viscoelastic carbon nanotubes (CNTs) conveying fluid and embedded in viscous fluid is investigated by the nonlocal Timoshenko beam model. The governing equations are developed by Hamilton's principle, including the effects of structural damping of the CNT, internal moving fluid, external viscous fluid, temperature change and nonlocal parameter. Applying Galerkin’s approach, the resulting equations are transformed into a set of eigenvalue equations. The validity of the present analysis is confirmed by comparing the results with those obtained in literature. The effects of the main parameters on the vibration characteristics of the CNT are also elucidated. Most results presented in the present investigation have been absent from the literature for the vibration and instability of the CNT conveying fluid.  相似文献   

7.
In this study, the instability of triple-walled carbon nanotubes (TWCNTs) conveying fluid is studied based on an Euler–Bernoulli beam model. The van der Waals (vdW) interactions between different carbon nanotubes (CNTs) are taken into account in the analysis, and the Galerkin discretization approach is used to solve the coupled equations of the motions. Numerical simulations show that the interlayer vdW interactions play a significant role in the natural frequencies and the stability of TWCNTs. The critical flow velocities—associated with divergence, restabilization and flutter—are determined. The effects of different inner radius and the value of mode N used in Galerkin discretization on the dynamical behaviors of the fluid-conveyed TWCNTs are also examined in detail. Results reveal that the internal moving fluid plays an important role in the instability of TWCNTs.  相似文献   

8.
Based on the theory of thermal elasticity mechanics, an elastic Bernoulli–Euler beam model is developed for vibration and instability analysis of fluid-conveying single-walled carbon nanotubes (SWNTs) considering the thermal effect. Results are demonstrated for the dependence of natural frequencies on the flow velocity as well as temperature change. The influence of temperature change on the critical flow velocity at which buckling instability occurs is investigated. It is concluded that the effect of temperature change on the instability of SWNTs conveying fluid is significant.  相似文献   

9.
We report instability of the single-walled carbon nanotubes(SWCNT) filled with non-Newtonian Jeffrey fluid.Our objective is to get the influences of relaxation time and retardation time of the Jeffrey fluid on the vibration frequency and the decaying rate of the amplitude of carbon nanotubes.An elastic Euler-Bernoulli beam model is used to describe vibrations and structural instability of the carbon nanotubes.A new vibration equation of an SWCNT conveying Jeffrey fluid is first derived by employing Euler-Bernoulli beam equation and Cauchy momentum equation taking constitutive relation of Jeffrey fluid into account.The complex vibrating frequencies of the SWCNT are computed by solving a cubic eigenvalue problem based upon differential quadrature method(DQM).It is interesting to find from computational results that retardation time has significant influences on the vibration frequency and the decaying rate of the amplitude.Especially,the vibration frequency decreases and critical velocity increases with the retardation time.That is to say,longer retardation time makes the SWCNT more stable.  相似文献   

10.
In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.  相似文献   

11.
Wave propagation in single-walled carbon nanotubes (SWCNTs) conveying fluids and placed in multi-physical fields (including magnetic and temperature fields) is studied in this paper. The nanotubes are modelled as Timoshenko beams. Based on the nonlocal beam theory, the governing equations of motion are derived using Hamilton's principle, and then solved by Galerkin approach, leading to two second-order ordinary differential equations (ODEs). Numerical simulations are carried out to verify the analytical model proposed in the present study, and determine the influences of the nonlocal parameter, the fluid velocity and flow density, the temperature and magnetic field flux change, and the surrounding elastic medium on the wave behaviour of SWCNTs. The results show that the nonlocal parameter has a considerable influence on dynamic behaviour of the nanotube and the fluid flow inside it. The results also show that the magnetic and temperature fields play an important role on the wave propagation characteristics of SWCNTs.  相似文献   

12.
《Current Applied Physics》2014,14(8):1116-1139
Free dynamic analysis of transverse motion of vertically aligned stocky ensembles of single-walled carbon nanotubes is of particular interest. A linear model is developed to take into account the van der Waals forces between adjacent SWCNTs because of their bidirectional transverse displacements. Using Hamilton's principle, the discrete equations of motion of free vibration of the nanostructure are obtained based on the nonlocal Rayleigh, Timoshenko, and higher-order beam theories. The application of such discrete models for frequency analysis of highly populated ensembles would be associated with so much computational effort. To overcome such a problem, some useful nonlocal continuous models are established. The obtained results reveal that the newly developed models can successfully capture the predicted fundamental frequencies of the discrete models. Through various numerical studies, the roles of slenderness ratio, radius of the SWCNT, small-scale parameter, population of the ensemble, and intertube distance on the fundamental flexural frequency of the nanostructure are examined and discussed. The capabilities of the proposed nonlocal continuous models in predicting flexural frequencies of the nanostructure are also addressed.  相似文献   

13.
The effect of longitudinal magnetic field on vibration response of a sing-walled carbon nanotube (SWCNT) embedded in viscoelastic medium is investigated. Based on nonlocal Euler-Bernoulli beam theory, Maxwell’s relations, and Kelvin viscoelastic foundation model, the governing equations of motion for vibration analysis are established. The complex natural frequencies and corresponding mode shapes in closed form for the embedded SWCNT with arbitrary boundary conditions are obtained using transfer function method (TFM). The new analytical expressions for the complex natural frequencies are also derived for certain typical boundary conditions and Kelvin-Voigt model. Numerical results from the model are presented to show the effects of nonlocal parameter, viscoelastic parameter, boundary conditions, aspect ratio, and strength of the magnetic field on vibration characteristics for the embedded SWCNT in longitudinal magnetic field. The results demonstrate the efficiency of the proposed methods for vibration analysis of embedded SWCNTs under magnetic field.  相似文献   

14.
The effect of the induced vibrations in the carbon nanotubes (CNTs) arising from the internal fluid flow is a critical issue in the design of CNT-based fluidic devices. In this study, in-plane vibration analysis of curved CNTs conveying fluid embedded in viscoelastic medium is investigated. The CNT is modeled as a linear elastic cylindrical tube where the internal moving fluid is characterized by steady flow velocity and mass density of fluid. A modified-inextensible theory is used in formulation and the steady-state initial forces due to the centrifugal and pressure forces of the internal fluid are also taken into account. The finite element method is used to discretize the equation of motion and the frequencies are obtained by solving a quadratic eigenvalue problem. The effects of CNT opening angle, the elastic modulus and the damping factor of the viscoelastic surrounded medium and fluid velocity on the resonance frequencies are elucidated. It is shown that curved CNTs are unconditionally stable even for a system with sufficiently high flow velocity. The most results presented in this investigation have been absent from the literature for fluid-induced vibration of curved CNTs embedded in viscoelastic foundations.  相似文献   

15.
16.
Nowadays investigating the vibration behavior of carbon nanotubes (CNTs) has drawn considerable attention due to the superior mechanical properties of the CNTs. One of the powerful theoretical methods to study the vibration behavior of CNTs is implementing the nonlocal theory. Most of studies on the vibration behavior of CNTs have assumed a fixed value for small scale parameter for all vibration modes, however, this value is mode-dependent. Therefore, in this paper, the small scale parameter is calibrated for a single-walled carbon nanotube (SWCNT) with respect to each vibration mode. For this propose, the governing equation of motion based on the nonlocal beam theory is extracted by applying the Hamilton's principle. Then, by using the power series method, an eigenvalue problem is defined to derive the calibrated value of small scale constant and nonlocal mode shapes of the CNT. By using the expansion theory, the equation of motion is discretized, and the effect of nonlocality on the modal parameters and stability of the CNT under compressive force is investigated. Finally, the possibility of estimating nonlocal parameter based on simulated frequency domain response of the system by using modal analysis methods is studied. The results show that the calibration of small scale constant is important and the critical axial force is highly sensitive to this value.  相似文献   

17.
The vibration and instability of a single-walled carbon nanotube (SWCNT) under a general magnetic field are of particular interest to researchers. Using nonlocal Rayleigh beam theory and Maxwell’s equations, the dimensionless governing equations pertinent to the free vibration of a SWCNT due to a general magnetic field were derived. The effects of the longitudinal and transverse magnetic fields on the longitudinal and flexural frequencies as well as their corresponding phase velocities were addressed and are discussed below. The critical transverse magnetic field (CTMF) associated with the lateral buckling of the SWCNT was obtained. The obtained results reveal that the CTMF increases with the longitudinally induced magnetic field. Further, its value decreases as the effect of the small-scale parameter increases.  相似文献   

18.
In this study, the effects of small-scale of the both nanoflow and nanostructure on the vibrational response of fluid flowing single-walled carbon nanotubes are investigated. To this purpose, two various flowing fluids, the air-nano-flow and the water nano-flow using Knudsen number, and two different continuum theories, the nonlocal theory and the strain-inertia gradient theory are studied. Nano-rod model is used to model the fluid-structure interaction, and Galerkin method of weighted residual is utilizing to solve and discretize the governing obtained equations. It is found that the critical flow velocity decreases as the wave number increases, excluding the first mode divergence that it has the least value among of the other instabilities if the strain-inertia gradient theory is employed. Moreover, it is observed that Kn effect has considerable impact on the reduction of critical velocities especially for the air-flow flowing through the CNT. In addition, by increasing a nonlocal parameter and Knudsen number the critical flow velocity decreases but it increases as the characteristic length related to the strain-inertia gradient theory increases.  相似文献   

19.
This paper concerns with the effect of small scale on the vibrational characteristics of multi-walled carbon nanotubes (MWCNTs) modeled as multiple nonlocal Euler beams. In this model, each nanotube interacts with its neighbors through the van der Waals force. Analytical approaches are expressed to solve coupled governing equations of the motion. Results for double- and five-walled carbon nanotubes (DWCNTs and FWCNTs), as two specific examples of MWCNTs, are presented for various boundary conditions. Then, effect of small scale on the natural and intertube resonant frequencies and their associated amplitude ratios are discussed. Besides the effect of small scale, the effect of end conditions on the vibrational properties and a comparison between the methods are provided. Natural and intertube frequencies reduce with the introduction of nonlocal parameter. However, reduction of intertube frequencies is less than the natural frequencies. Moreover, it is provided that the effect of small scale stiffens the van der Waals force and causes MWCNTs to behave similar to a single beam in high values of nonlocal parameter. Also, this study reveals that in high mode numbers, natural frequencies of a multiple classical Euler beams system tend to frequencies of its constituent beams.  相似文献   

20.
In this paper, we study the flexural vibration behavior of single-walled carbon nanotubes (SWCNTs) for the assessment of Timoshenko beam models. Extensive molecular dynamics (MD) simulations based on second-generation reactive empirical bond-order (REBO) potential and Timoshenko beam modeling are performed to determine the vibration frequencies for SWCNTs with various length-to-diameter ratios, boundary conditions, chiral angles and initial strain. The effectiveness of the local and nonlocal Timoshenko beam models in the vibration analysis is assessed using the vibration frequencies of MD simulations as the benchmark. It is shown herein that the Timoshenko beam models with properly chosen parameters are applicable for the vibration analysis of SWCNTs. The simulation results show that the fundamental frequencies are independent of the chiral angles, but the chirality has an appreciable effect on higher vibration frequencies. The SWCNTs is very sensitive to the initial strain even if the strain is extremely small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号