首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid
Institution:1. Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, NajafAbad, Najafabad, Iran;2. Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran;3. Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran;1. Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Ministry of Education, Shanghai 201804, China;2. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;1. Universidad Anáhuac Mayab, División de Ingeniería y Ciencias Exactas, Carretera Mérida-Progreso km 15.5 AP 96-Cordemex, CP 97310 Mérida, Yucatán, Mexico;2. Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43, No. 130 Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico;3. Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, Departamento de Física Aplicada, AP 73-Cordemex, 97310 Mérida, Yucatán, Mexico;1. Mechanical Engineering Department, Sahand University of Technology, Sahand Newtown, 51335-1996 Tabriz, Iran;2. Aerospace Engineering Department, Amirkabir University of Technology, 15875-4413 Tehran, Iran
Abstract:Nowadays, carbon nanotubes (CNT) play an important role in practical applications in fluidic devices. To this end, researchers have studied various aspects of vibration analysis of a behavior of CNT conveying fluid. In this paper, based on nonlocal elasticity theory, single-walled carbon nanotube (SWCNT) is simulated. To investigate and analyze the effect of internal fluid flow on the longitudinal vibration and stability of SWCNT, the equation of motion for longitudinal vibration is obtained by using Navier-Stokes equations. In the governing equation of motion, the interaction of fluid-structure, dynamic and fluid flow velocity along the axial coordinate of the nanotube and the nano-scale effect of the structure are considered. To solve the nonlocal longitudinal vibration equation, the approximate Galerkin method is employed and appropriate simply supported boundary conditions are applied. The results show that the axial vibrations of the nanotubesstrongly depend on the small-size effect. In addition, the fluid flowing in nanotube causes a decrease in the natural frequency of the system. It is obvious that the system natural frequencies reach zero at lower critical flow velocities as the wave number increases. Moreover, the critical flow velocity decreases as the nonlocal parameter increases.
Keywords:Longitudinal vibration  Carbon nanotube  Fluid-structure interaction  Nonlocal theory  Viscous fluid  Stability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号