首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
In this paper a constitutive model for rigid-plastic hardening materials based on the Hencky logarithmic strain tensor and its corotational rates is introduced. The distortional hardening is incorporated in the model using a distortional yield function. The flow rule of this model relates the corotational rate of the logarithmic strain to the difference of the Cauchy stress and the back stress tensors employing deformation-induced anisotropy tensor. Based on the Armstrong–Fredrick evolution equation the kinematic hardening constitutive equation of the proposed model expresses the corotational rate of the back stress tensor in terms of the same corotational rate of the logarithmic strain. Using logarithmic, Green–Naghdi and Jaumann corotational rates in the proposed constitutive model, the Cauchy and back stress tensors as well as subsequent yield surfaces are determined for rigid-plastic kinematic, isotropic and distortional hardening materials in the simple shear deformation. The ability of the model to properly represent the sign and magnitude of the normal stress in the simple shear deformation as well as the flattening of yield surface at the loading point and its orientation towards the loading direction are investigated. It is shown that among the different cases of using corotational rates and plastic deformation parameters in the constitutive equations, the results of the model based on the logarithmic rate and accumulated logarithmic strain are in good agreement with anticipated response of the simple shear deformation.  相似文献   

3.
The main objective of this study is to characterize the mechanical behaviour of an Al-Mg alloy in conditions close to those encountered during sheet forming processes, i.e. with strain path changes and at strain rates and temperatures in the range 1.2×10?3–1.2×10?1 s?1 and 25–200°C, respectively. The onset of jerky flow and the interaction of dynamic strain ageing with the work-hardening are investigated during reversed-loading in specific simple shear tests, which consist of loading up to various shear strain values followed by reloading in the opposite direction, combined with direct observations of the sample surface using a digital image correlation technique. Both strain path changes and temperature are clearly shown to influence the occurrence and onset of the Portevin-Le Chatelier (PLC) effect. Moreover, the Bauschinger effect observed in the material response shows that the PLC effect has a major influence on the kinematic contribution to work-hardening as well as its stagnation during the reloading stage, which could open up interesting lines of research to improve theoretical plasticity models for this family of aluminium alloys.  相似文献   

4.
A model is proposed that deals with the transient mechanical anisotropy during strain-path changes in metals. The basic mechanism is assumed to be latent hardening or softening of the slip systems, dependent on if they are active or passive during deformation, reflecting microstructural mechanisms that depend on the deformation mode rather than on the crystallography. The new model captures the experimentally observed behaviour of cross hardening in agreement with experiments for an AA3103 aluminium alloy. Generic results for strain reversals qualitatively agree with two types of behaviour reported in the literature – with or without a plateau on the stress–strain curve. The influence of the model parameters is studied through detailed calculations of the response of three selected parameter combinations, including the evolution of yield surface sections subsequent to 10% pre-strain. The mathematical complexity is kept to a minimum by avoiding explicit predictions related directly to underpinning microstructural changes. The starting point of the model is a combination of conventional texture and work hardening approaches, where an adapted full-constraints Taylor theory and a simple single-crystal work-hardening model for monotonic strain are used. However, the framework of the model is not restricted to these particular models.  相似文献   

5.
Experimental results of monotonic uniaxial tensile tests at different strain rates and the reversed strain cycling test showed the characteristics of rate-dependence and cyclic hardening of Z2CND18.12N austenitic stainless steel at room temperature, respectively. Based on the Ohno-Wang kinematic hardening rule, a visco-plastic constitutive model incorporated with isotropic hardening was developed to describe the uniaxial ratcheting behavior of Z2CND18.12N steel under various stress-controlled loading conditions. Predicted results of the developed model agreed better with experimental results when the ratcheting strain level became higher, but the developed model overestimated the ratcheting deformation in other cases. A modified model was proposed to improve the prediction accuracy. In the modified model, the parameter mi of the Ohno-Wang kinematic hardening rule was developed to evolve with the accumulated plastic strain. Simulation results of the modified model proved much better agreement with experiments.  相似文献   

6.
Forming limit stresses of sheet metals subjected to linear and combined stress paths are analyzed using the M-K model in conjunction with two anisotropic work-hardening models: a work-hardening model which is capable of describing Bauschinger and cross-hardening effects, and a work-hardening model which cannot predict the cross-hardening effect. It is found that the forming limit stress is path-independent when the stress–strain curves for the linear and combined stress paths agree well with each other. On the other hand, the forming limit stress for the combined stress path depends on the strain path when the prestrain changes the subsequent stress–strain relation. We conclude that the stress-based forming limit criterion is efficient only for a material with a work-hardening behavior that is not affected by strain path change. The influence of the work-hardening behavior on the forming limit stress is discussed in detail.  相似文献   

7.
In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain is characterized in terms of an elastic–viscoplastic continuum slip constitutive relation. First, a simple model analysis in which the shear band is assumed to occur in a weaker thin slice of material is performed. From this simple model analysis, two important quantities regarding shear band formation are obtained: i.e. the critical strain at the onset of shear banding and the corresponding orientation of shear band. Second, the shear band development in plane strain tension/compression is analyzed by the finite element method. Predictability of the finite element analysis is compared to that of the simple model analysis. Third, shear band developments in plane strain pure bending of a sheet specimen with the typical textures are studied. Regions near the surfaces in a bent sheet specimen are approximately subjected to plane strain tension or compression. From this viewpoint, the bendability of a sheet specimen may be evaluated, using the knowledge regarding shear band formation in plane strain tension/compression. To confirm this and to encompass overall deformation of a bent sheet specimen, including shear bands, finite element analyses of plane strain pure bending are carried out, and the predicted shear band formation in bent specimens is compared to that in the tension/compression problem. Finally, the present results are compared to previous related studies, and the efficiency of the present method for materials design in future is discussed.  相似文献   

8.
This paper presents a deceptively simple mathematical model for the deformation of granular materials composed of rigid particles. The model captures many of the diverse features of the behaviour of such a material and emphasises the importance of volume constraints in situations where the deformation is mainly by particle rearrangement. It is constructed using a simple dissipation function and a rather more complicated dilatancy rule containing an updateable reference strain. This allows the solid-like and fluid-like properties of granular materials to be reconciled in a single model.The model has been used to simulate experiments that use an analogue of an ideal granular material [Joer, H.A., Lanier, J., Fahey, M., 1998. Deformation of granular materials due to rotation of principal axes. Geotechnique 48 (5), 605-619] consisting of a two dimensional assembly of thin PVC rods. These experiments clearly illustrate: partially reversible dilatancy in direct shear tests; cyclic shearing leading to liquefaction in constant volume shear tests; and non-coaxiality of the principal axes of stress and strain increment in circular loading tests. These radically different modes of deformation provide a challenging data set that allows the model's potential to be clearly demonstrated.The authors believe that the comparison of these experimental results and our simulations give strong support to the assertion that volume changes associated with shear deformation are responsible for the rotational kinematic hardening seen in granular materials, and hence, the non-coaxiality of the stress and strain-rate tensors.  相似文献   

9.
The kinematic contribution to the hardening of ultra-thin metallic sheets characterized by monotonic and reversed simple shear tests is of high interest in the sheet metal forming industry, because of its influence on the accurate prediction of springback. However, ultra-thin sheets are very sensitive to buckling when submitted to shear stress because of the large gauge width to thickness ratio, the stress perturbations induced by the clamping and the alignment of sample, which thus limit the attainable strain levels using conventional simple shear devices. In this paper, a new simple shear test dedicated to ultra-thin metallic sheets is proposed through the development of a specific support. A transparent glass part enables the application of a normal tightening force to prevent the out-of-plane buckling of the sheets whilst also allowing full field strain measurements to be taken. Firstly, the capabilities of the device are shown by comparing the mechanical behavior in a simple shear test on an austenitic stainless steel with and without the support. A good reproducibility of the flow curves is observed with the support and large shear strains are reached without buckling. Secondly, the influence of friction due to the contact between the sample and the support is checked by finite elements simulations and shown to be negligible compared to the shearing force. Finally, monotonic and reversed shear tests on a pure copper sheet with a thickness of 0.1 mm were performed up to rupture without buckling, these were not previously conceivable on such a low thichness, and demonstrate the potential of the proposed device.  相似文献   

10.
The rate-dependent behavior of filled natural rubber (NR) and high damping rubber (HDR) is investigated in compression and shear regimes. In order to describe the viscosity-induced rate-dependent effects, a constitutive model of finite strain viscoelasticity founded on the basis of the multiplicative decomposition of the deformation gradient tensor into elastic and inelastic parts is proposed. The total stress is decomposed into an equilibrium stress and a viscosity-induced overstress by following the concept of the Zener model. To identify the constitutive equation for the viscosity from direct experimental observations, an analytical scheme that ascertains the fundamental relation between the inelastic strain rate and the overstress tensor of the Mandel type by evaluating simple relaxation test results is proposed. Evaluation of the experimental results using the proposed analytical scheme confirms the necessity of considering both the current overstress and the current deformation as variables to describe the evolution of the rate-dependent phenomena. Based on this experimentally based motivation, an evolution equation using power laws is proposed to represent the effects of internal variables on viscosity phenomena. The proposed evolution equation has been incorporated in the finite strain viscoelasticity model in a thermodynamically consistent way. Simulation results for simple relaxation tests, multi-step relaxation tests and monotonic tests at different strain rates using the developed model show an encouraging correlation with the experiments conducted on HDR and NR in both compression and shear regimes. Finally, an approach to extend the proposed evolution equation for rate-dependent cyclic processes is proposed. The simulation results are critically compared with the experiments.  相似文献   

11.
The bi-axial experimental equipment [Flores, P., Rondia, E., Habraken, A.M., 2005a. Development of an experimental equipment for the identification of constitutive laws (Special Issue). International Journal of Forming Processes] developed by Flores enables to perform Bauschinger shear tests and successive or simultaneous simple shear tests and plane strain tests. Flores investigates the material behavior with the help of classical tensile tests and the ones performed in his bi-axial machine in order to identify the yield locus and the hardening model. With tests performed on one steel grade, the methods applied to identify classical yield surfaces such as [Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic materials. Proceedings of the Royal Society of London A 193, 281–297; Hosford, W.F., 1979. On yield loci of anisotropic cubic metals. In: Proceedings of the 7th North American Metalworking Conf. (NMRC), SME, Dearborn, MI, pp. 191–197] ones as well as isotropic Swift type hardening, kinematic Armstrong–Frederick or Teodosiu and Hu hardening models are explained. Comparison with the Taylor–Bishop–Hill yield locus is also provided. The effect of both yield locus and hardening model choices is presented for two applications: plane strain tensile test and Single Point Incremental Forming (SPIF).  相似文献   

12.
Central to this analysis is the identification of six rotation invariant scalars α1-6 that succinctly define the strain in materials that have one family of parallel fibers arranged in laminae. These scalars were chosen so as to minimize covariance amongst the response terms in the hyperelastic limit, and they are termed strain attributes because it is necessary to distinguish them from strain invariants. The Cauchy stress t is expressed as the sum of six response terms, almost all of which are mutually orthogonal for finite strain (i.e. 14 of the 15 inner products vanish). For small deformations, the response terms are entirely orthogonal (i.e. all 15 inner products vanish). A response term is the product of a response function with its associated kinematic tensor. Each response function is a scalar partial derivative of the strain energy W with respect to a strain attribute. Applications for this theory presently include myocardium (heart muscle) which is often modeled as having muscle fibers arranged in sheets. Utility for experimental identification of strain energy functions is demonstrated by showing that common tests on incompressible materials can directly determine terms in W. Since the described set of strain attributes reduces the covariance amongst response terms, this approach may enhance the speed and precision of inverse finite element methods.  相似文献   

13.
In this paper, a constitutive model with a temperature and strain rate dependent flow stress (Bergstrom hardening rule) and modified Armstrong-Frederick kinematic evolution equation for elastoplastic hardening materials is introduced. Based on the multiplicative decomposition of the deformation gradient,new kinematic relations for the elastic and plastic left stretch tensors as well as the plastic deformation-dependent spin tensor are proposed. Also, a closed-form solution has been obtained for the elastic and plastic left stretch tensors for the simple shear problem.To evaluate model validity, results are compared with known experimental data for SUS 304 stainless steel, which shows a good agreement with the results of the proposed theoretical model.Finally, the stress-deformation curve, as predicted by the model, is plotted for the simple shear problem at room and elevated temperatures using the same material properties for AA5754-O aluminium alloy.  相似文献   

14.
The localized deformation field of high density polyethylene and polypropylene during a tensile test accompanied by neck propagation was quantitatively evaluated based on the network digital image correlation method. In the proposed method, the continuity of the deformation field around a point of interest was introduced for accurate evaluation of the displacement. The accuracy of the proposed method was verified through test images. Using the proposed method, the development of a non-uniform displacement field during tensile tests was evaluated from sequential digital images. The local strain rate was almost uniform until the nominal stress reached its maximum value. After the maximum stress was reached, non-uniform deformation developed at a part of the gauge region of the specimen. A decrease in nominal stress induced a reduction of the local strain rate at regions other than the necked zone. In this study, the cross section average local true stress, strain, and strain rate can be evaluated from the local displacement field. Thus, the relationship between these quantities was evaluated during the tensile tests. Using the proposed method, the local response under wide ranges of strain and strain rate can be evaluated from a few test conditions of tensile strain rate and a small range of tensile strain. Finally, the relationships between gradients of stress, strain, and strain rate under uniaxial tension are discussed. These non-local quantities deviated from those predicted by constitutive equations when the domain size used to evaluate the local quantities was large.  相似文献   

15.
The aim of this work is to construct yield surfaces to describe initial yielding and characterize hardening behavior of a highly anisotropic material. A methodology for constructing yield surfaces for isotropic materials using axial–torsion loading is extended to highly anisotropic materials. The technique uses a sensitive definition of yielding based on permanent strain rather than offset strain, and enables multiple yield points and multiple yield surfaces to be conducted on a single specimen. A target value of 20 × 10−6 is used for Al2O3 fiber reinforced aluminum laminates having a fiber volume fraction of 0.55. Sixteen radial probes are used to define the yield locus in the axial–shear stress plane. Initial yield surfaces for [04], [904], and [0/90]2 fibrous aluminum laminates are well described by ellipses in the axial–shear stress plane having aspect ratios of 10, 2.5, and 3.3, respectively. For reference, the aspect ratio of the Mises ellipse for an isotropic material is 1.73. Initial yield surfaces do not have a tension–compression asymmetry. Four overload profiles (plus, ex, hourglass, and zee) are applied to characterize hardening of a [0/90]2 laminate by constructing 30 subsequent yield surfaces. Parameters to describe the center and axes of an ellipse are regressed to the yield points. The results clearly indicate that kinematic hardening dominates so that material state evolution can be described by tracking the center of the yield locus. For a nonproportional overload of (στ) = (500, 70) MPa, the center of the yield locus translated to (στ) = (430, 37) MPa and the ellipse major axis was only 110 MPa.  相似文献   

16.
A strain space plasticity theory based on the nonlinear kinematic hardening and softening rule is developed in order to accommodate work-hardening, work-softening, and elastic-perfectly plastic materials with one set of constitutive equations, and to facilitate strain controlled calculations. A generalized hardening/softening parameter is proposed, and the potential of linking the parameter to micro-mechanical material changes is discussed. The theory is used to investigate work-softening materials numerically and highlights a need for additional experimental results in this area.  相似文献   

17.
This paper aims at evaluating an elastoplastic constitutive model which accounts for combined isotropic-kinematic hardening for complex strain-path changes in a dual-phase steel, DP800. The capability of the model to reproduce the transient hardening phenomena under two-stage non-proportional loading has been assessed through numerical simulations of sequential uniaxial tension and notched tension/shear tests. Finite element simulations with shell elements were performed using the explicit non-linear FE code LS-DYNA. Numerical predictions of the stress–strain response were compared to the corresponding experimental data. The results from the experiments demonstrated that prior plastic deformation has certainly influenced the subsequent work-hardening behaviour of the material under biaxial or shear deformation modes. Furthermore, the numerical simulations from the two-stage uniaxial tension–notched tension and uniaxial tension–shear tests predicted the general trends of the experimental results such as transitory hardening and overall work hardening. However, some discrepancies were found in accurately describing the transient hardening behaviour subsequent to strain path changes between the experiments and numerical simulations.  相似文献   

18.
Nasdala  L.  Husni  A. H. 《Experimental Mechanics》2020,60(6):815-832

Background: For the standard ISO 16842 cruciform test specimen, stresses obtained from the gauge area are far below the ultimate tensile strength due to high stress concentrations at the slit ends which lead to premature failure. Objective: To introduce a new cruciform specimen design which has been optimized with respect to the determination of yield surfaces. Methods: The proposed design differs from the ISO standard by an additional thinning of the gauge area and wider slits in the arms to avoid stress singularities. Compared to other cruciform test piece designs found in the literature, the stress distribution is still homogeneous and there is no need to reduce the size of the gauge area, thanks to the specimen’s well-balanced proportions. Results: Biaxial tensile tests have been conducted with aluminium 5754 alloy samples of different thicknesses. For the standard cruciform test piece, the maximum strain achieved at the gauge area is only 25% of the fracture strain. The optimized cruciform test piece can attain about 66% of the fracture strain before breaking. Conclusions: The optimized specimen design enables the measurement of yield surfaces at higher stress levels. In case of other materials such as elastomers, the slit length has be to adjusted accordingly.

  相似文献   

19.
In this paper an anisotropic material model based on non-associated flow rule and mixed isotropic–kinematic hardening was developed and implemented into a user-defined material (UMAT) subroutine for the commercial finite element code ABAQUS. Both yield function and plastic potential were defined in the form of Hill’s [Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A 193, 281–297] quadratic anisotropic function, where the coefficients for the yield function were determined from the yield stresses in different material orientations, and those of the plastic potential were determined from the r-values in different directions. Isotropic hardening follows a nonlinear behavior, generally in the power law form for most grades of steel and the exponential law form for aluminum alloys. Also, a kinematic hardening law was implemented to account for cyclic loading effects. The evolution of the backstress tensor was modeled based on the nonlinear kinematic hardening theory (Armstrong–Frederick formulation). Computational plasticity equations were then formulated by using a return-mapping algorithm to integrate the stress over each time increment. Either explicit or implicit time integration schemes can be used for this model. Finally, the implemented material model was utilized to simulate two sheet metal forming processes: the cup drawing of AA2090-T3, and the springback of the channel drawing of two sheet materials (DP600 and AA6022-T43). Experimental cyclic shear tests were carried out in order to determine the cyclic stress–strain behavior and the Bauschinger ratio. The in-plane anisotropy (r-value and yield stress directionalities) of these sheet materials was also compared with the results of numerical simulations using the non-associated model. These results showed that this non-associated, mixed hardening model significantly improves the prediction of earing in the cup drawing process and the prediction of springback in the sidewall of drawn channel sections, even when a simple quadratic constitutive model is used.  相似文献   

20.
The deformation behavior of two unfilled engineering thermoplastics, ultra high molecular weight polyethylene (UHMWPE) and polycarbonate (PC), has been investigated in creep test conditions. It has been found that a loading history (prior to the creep test) comprising of loading to a maximum stress or strain value followed by partial unloading to arrive at the target stress value can greatly modify the strain-time behavior. Under such a test protocol, while the expected increase in strain during creep (constant tensile load) is observed, at relatively low creep stresses specimens have also demonstrated a monotonic decrease in strain. In an intermediate stress range, specimens have demonstrated time dependent behavior comprising of a transition from decreasing to increasing strain during creep in tension. This paper presents experimental results to delineate these findings and explore the effect of prior strain rate on the qualitative and quantitative changes in the output (strain-time) behavior. Furthermore, modification of the viscoplasticity theory based on overstress (VBO) model into a double element configuration is introduced. These changes confer upon the model the ability to yield non-monotonic behavior in creep, and supporting simulation results have been included. These changes, therefore, allow the model to simulate strain rate sensitivity, creep, relaxation, and recovery behavior, but more importantly address the issue of non-monotonic changes in creep and relaxation when a loading history involves some degree of unloading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号