首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Natural Deep eutectic solvents (NaDESs) are promising green solvents for the extraction of phytochemical compounds with antioxidant properties. In this study, we aimed to evaluate the behavior of the antioxidant properties of Alkanet (Alkanna tinctoria) root in hydrophilic NaDESs. For this purpose, two NaDESs constituted of sodium acetate:lactic acid (SALA12) and sodium acetate:formic acid (SAFA12) were synthesized to evaluate the antioxidant properties of Alkanet. 70% ethanol, 80% methanol and water were used as conventional solvents for comparison. SALA12 and SAFA12 were characterized considering their viscosities and FITR spectra. The extracts obtained with SALA12 and SAFA12 presented the best results when compared to the conventional solvents. The NaDES presented the highest extraction performance was SAFA12. This prominent NaDES was subjected to the response surface methodology using a Box-Behnken design to figure out the optimum conditions to have the maximum antioxidant activity of Alkanet root. For total phenolic content (TPC), total flavonoid content (TFC) and DPPH radical scavenging, the optimum conditions were 1:4 molar ratio, 45% water content and 25% mL solvent ratio. The confirmed responses at the optimum conditions were 390.16 mg GAE/g, 10.69 mg ECE/g and 444.68 mmol TE/g, respectively. NaDES molar ratio and water content were found to impact most significantly the antioxidant properties Alkanet. The thermal stability experimentation revealed that phytochemicals along with the antioxidant properties of Alkanet were more stable in NaDES. These findings revealed that novel NaDES is an efficient green solvent for the extraction of bioactive compounds with antioxidant properties from plants.  相似文献   

2.
Two bio-based solvents, natural deep eutectic solvents (NaDESs) and γ-valerolactone (GVL), have been used under microwave (MW), and ultrasound (US) irradiation to design an efficient and sustainable process for wheat straw delignification and have been compared with the traditional alkali procedure. Best delignification (45%) was achieved with a three-component NaDES (lactic acid/glycerol/choline chloride) under MW irradiation (at 120 °C in 30 min), with solid/liquid ratio of 1:50. A GVL/water mixture (8:2) also gave an efficient delignification (27%) under US irradiation (40 kHz, 200 W) at 50 °C for 60 min. Analytical pyrolysis (Py) coupled with GC/MS/FID, provides valuable information on the extracts’ chemical profile. DPPH and Folin–Ciocalteu tests highlighted the efficiency of MW- and US-assisted extraction as well as the extracts quality. The highest antioxidant activity for the NaDES extracts was obtained under US irradiation.  相似文献   

3.
The objective of this work was to determine the optimum conditions of sugarcane bagasse pretreatment with lime to increase the enzymatic hydrolysis of the polysaccharide component and to study the delignification kinetics. The first stage was an evaluation of the influence of temperature, reaction time, and lime concentration in the pretreatment performance measured as glucose release after hydrolysis using a 23 central composite design and response surface methodology. The maximum glucose yield was 228.45 mg/g raw biomass, corresponding to 409.9 mg/g raw biomass of total reducing sugars, with the pretreatment performed at 90°C, for 90 h, and with a lime loading of 0.4 g/g dry biomass. The enzymes loading was 5.0 FPU/dry pretreated biomass of cellulase and 1.0 CBU/dry pretreated biomass of β-glucosidase. Kinetic data of the pretreatment were evaluated at different temperatures (60°C, 70°C, 80°C, and 90°C), and a kinetic model for bagasse delignification with lime as a function of temperature was determined. Bagasse composition (cellulose, hemicellulose, and lignin) was measured, and the study has shown that 50% of the original material was solubilized, lignin and hemicellulose were selectively removed, but cellulose was not affected by lime pretreatment in mild temperatures (60–90°C). The delignification was highly dependent on temperature and duration of pretreatment.  相似文献   

4.
The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60–70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.  相似文献   

5.
Downregulated lignin transgenic black cottonwood (Populus trichocarpa) was used to elucidate the effect of lignin and xylan content on enzymatic saccharification. The lignin contents of three transgenic samples (4CL1-1, 4CL1-4, and CH8-1-4) were 19.3, 16.7, and 15.0?%, respectively, as compared with the wild type (21.3?%). The four pretreatments were dilute acid (0.1?% sulfuric acid, 185?°C, 30?min), green liquor (6?% total titratable alkali, 25?% sulfidity based on TTA, 185?°C, and 15?min.), autohydrolysis (185?°C, 30?min), and ozone delignification (25?°C, 30?min). Following the pretreatment, enzymatic saccharification was carried out using an enzyme charge of 5?FPU/g of substrates. The removal of lignin and hemicellulose varies with both the types of pretreatments and the lignin content of the transgenic trees. Due to the greatest removal of lignin, green liquor induced the highest sugar production and saccharification efficiency, followed by acid, ozone, and autohydrolysis in descending order. The results indicated that lignin is the main recalcitrance of biomass degradation. At a given lignin content, pretreatment with ozone delignification had lower saccharification efficiency than the other pretreatment methods due to higher xylan content.  相似文献   

6.
In this study, sustainable technology microwave-assisted extraction (MAE) in association with green solvents was applied to recover phenolic compounds from spent coffee grounds (SCGs). A design of experiments (DOE) was used for process optimization. Initially, a 24−1 two level Fractional Factorial Design was used and ratios “solvent to solute” and “ethanol to water” were identified as the significant experimental factors. Consequently, Central Composite Design (CCD) was applied to analyze the effects of the significant variables on the response yield, total polyphenols content (TPC), and antioxidant activity (AA) by the DPPH assay method, and quadratic surfaces to optimize those responses were generated. The values of the significant factors of 16.7 (solvent/solute) and 68.9% (ethanol/water) were optimized simultaneously the yield (%) at 6.98 ± 0.27, TPC (mg GAE/g) at 117.7 ± 6.1, and AA (µmol TE/g) at 143.8 ± 8.6 and were in excellent agreement with those predicted from the CCD model. The variations of the compositions of the lipids, caffeine, pentacyclic diterpenes, and FAME as a function of the dominant factor % ethanol in the solvent mixture were analyzed by applying NMR and GC-FID, and the results obtained confirmed their determinative significance.  相似文献   

7.
Sorghum is a tropical grass grown primarily in semiarid and drier parts of the world, especially areas too dry for corn. Sorghum production also leaves about 58 million tons of by-products composed mainly of cellulose, hemicellulose, and lignin. The low lignin content of some forage sorghums such as brown midrib makes them more digestible for ethanol production. Successful use of biomass for biofuel production depends on not only pretreatment methods and efficient processing conditions but also physical and chemical properties of the biomass. In this study, four varieties of forage sorghum (stems and leaves) were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy and X-ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and the enzymatic hydrolysis process. Forage sorghums with a low syringyl/guaiacyl ratio in their lignin structure were easy to hydrolyze after pretreatment despite the initial lignin content. Enzymatic hydrolysis was also more effective for forage sorghums with a low crystallinity index and easily transformed crystalline cellulose to amorphous cellulose, despite initial cellulose content. Up to 72% hexose yield and 94% pentose yield were obtained using modified steam explosion with 2% sulfuric acid at 140 °C for 30 min and enzymatic hydrolysis with cellulase (15 filter per unit (FPU)/g cellulose) and β-glucosidase (50 cellobiose units (CBU)/g cellulose).  相似文献   

8.
In this study, we determined the phytochemical profile of the Spanish “triguero” asparagus landrace “verde-morado” (Asparagus officinalis L.), a wild traditional landrace, and the improved “triguero” HT-801, together with two commercial green asparagus varieties. For comparison, we used reverse-phase high-performance liquid chromatography coupled with diode array electrospray time-of-flight mass spectrometry (RP-HPLC-DAD-ESI-TOF/MS) followed by a permutation test applied using a resampling methodology valid under a relaxed set of assumptions, such as i.i.d. errors (not necessarily normal) that are exchangeable under the null hypothesis. As a result, we postulate that “triguero” varieties (the improved HT-801 followed by its parent “verde-morado”) have a significantly different phytochemical profile from that of the other two commercial hybrid green varieties. In particular, we found compounds specific to the “triguero” varieties, such as feruloylhexosylhexose isomers, or isorhamnetin-3-O-glucoside, which was found only in the “triguero” variety HT-801. Although studies relating the phytochemical content of “triguero” asparagus varieties to its health-promoting effects are required, this characteristic phytochemical profile can be used for differentiating and revalorizating these asparagus cultivars.  相似文献   

9.
In general, lignocellulosic biomass contains three major components, namely lignin, hemicellulose and cellulose which are the polymers of C5 and C6 sugars. Thus, there is potential to utilize of this biomass for bioethanol production. The hydrolysis of cellulose into glucose was difficult due to the more fibrous nature and thus inhibit enzyme penetration into the cellulose. In order to solve this problem, hydrothermal pretreatment can be used for breaking the bonds within the lignin structure and increase the accessibility of enzyme into the cellulose. In this study, the effect of chemical addition, sodium hydroxide (NaOH) and calcium oxide (CaO) in hydrothermal pretreatment at 180 °C and 30 minutes reaction time of palm oil empty fruit bunches (EFB) on the enzymatic hydrolysis efficiencies was investigated. The enzymatic hydrolysis of hydrothermally pretreated EFB give the highest concentration of glucose at 0.67 g/L while the hydrothermally pretreated of EFB in the presence of NaOH gives the lowest glucose concentration 0.45 g/L.  相似文献   

10.
Small differences in the isolation techniques of lignin can result in significant changes in its molecular structure and configuration. Light scattering (evaluated at 18 different angles in a plane), Atomic Force Microscopy (AFM) and Near Infrared Spectroscopy (NIR) proved very effective for evaluating the characteristics of lignin. Zimm plots were generated using Zimm, Debye and Berry formalisms to evaluate the weight average molecular weight (MW), radius of gyration (rg), hydrodynamic radius (rh) and second virial coefficient (A2). Two types of lignin and nine different solvents were used for the study, to analyze the conformation of lignin molecules in different solvents expected to be used in lignin degradation and subsequent analysis. Absolute MW and rg decreased and the dn/dc increased when the solvent used for lignin was changed from water to sodium hydroxide. The two types of lignin also exhibited different values for all the above estimated parameters. This study also highlighted the differences between the unlyophilized and lyophilized lignin in terms of aggregation, pH dependence and stability over time. This aggregation has never been seen on a ultraviolet (UV) or refractive index (RI) detector that has been used so far for liquid chromatography (LC) reducing the reliability of lignin depolymerization data obtained without light scattering.  相似文献   

11.
Lime pretreatment of crop residues bagasse and wheat straw   总被引:9,自引:0,他引:9  
Lime (calcium hydroxide) was used as a pretreatment agent to enhance the enzymatic digestibility of two common crop residues: bagasse and wheat straw. A systematic study of pretreatment conditions suggested that for short pretreatment times (1–3 h), high temperatures (85-135°C) were required to achieve high sugar yields, whereas for long pretreatment times (e.g., 24 h), low temperatures (50–65°C) were effective. The recommended lime loading is 0.1 g Ca(OH)2/g dry biomass. Water loading had little effect on the digestibility. Under the recommended conditions, the 3-d reducing sugar yield of the pretreated bagasse increased from 153 to 659 mg Eq glucose/g dry biomass, and that of the pretreated wheat straw increased from 65 to 650 mg Eq glucose/g dry biomass. A material balance study on bagasse showed that the biomass yield after lime pretreatment is 93.6%. No glucan or xylan was removed from bagasse by the pretreatment, whereas 14% of lignin became solubilized. A lime recovery study showed that 86% of added calcium was removed from the pretreated bagasse by ten washings and could be recovered by carbonating the wash water with CO2 at pH 9.5.  相似文献   

12.
Nowadays, more and more attention is paid to the development and the intensification of the use of renewable energy sources. Hemp might be an alternative plant for bioenergy production. In this paper, four varieties of Polish industrial hemp (Białobrzeskie, Tygra, Henola, and Rajan) were investigated in order to determine which of them are the most advantageous raw materials for the effective production of bioethanol. At the beginning, physical and chemical pretreatment of hemp biomass was carried out. It was found that the most effective is the alkaline treatment with 2% NaOH, and the biomasses of the two varieties were selected for next stages of research: Tygra and Rajan. Hemp biomass before and after pretreatment was analyzed by FTIR and SEM, which confirmed the effectiveness of the pretreatment. Next, an enzymatic hydrolysis process was carried out on the previously selected parameters using the response surface methodology. Subsequently, the two approaches were analyzed: separated hydrolysis and fermentation (SHF) and a simultaneous saccharification and fermentation (SSF) process. For Tygra biomass in the SHF process, the ethanol concentration was 10.5 g∙L−1 (3.04 m3·ha−1), and for Rajan biomass at the SSF process, the ethanol concentration was 7.5 g∙L−1 (2.23 m3·ha−1). In conclusion, the biomass of Polish varieties of hemp, i.e., Tygra and Rajan, was found to be an interesting and promising raw material for bioethanol production.  相似文献   

13.
The use of green solvents as an alternative to dimethylformamide (DMF) in the synthesis of zeolitic imidazolate framework-90 (ZIF-90) was investigated. Two biobased aprotic dipolar solvents CyreneTM and γ-valerolactone (GVL) proved to successfully replace DMF in the synthesis at room temperature with a high product yield. While the CyreneTM—based product shows reduced porosity after activation, the use of GVL resulted in materials with preserved crystallinity and porosity after activation, without prior solvent exchange and a short treatment at 200 °C. The primary particles of 30 nm to 60 nm in all products further form agglomerates of different size and interparticle mesoporosity, depending on the type and molar ratios of solvents used.  相似文献   

14.
In recent years, growing attention has been focused on the use of lignocellulosic biomass as a feedstock for the production of ethanol, a possible renewable alternative to fossil fuels. Several pretreatment processes have been developed for decreasing the biomass recalcitrance, but only a few of them seem to be promising. In this study, effect of various organic solvents and organic acids on the pretreatment of sugarcane bagasse was studied. Among the different organic acids and organic solvents tested, formic acid was found to be effective. Optimization of process parameters for formic acid pretreatment was carried out. The structural changes before and after pretreatment was investigated by scanning electron microscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The X-ray diffraction profile showed that the degree of crystallinity was more for pretreated biomass than that of untreated. The FTIR spectra shown at the stretching of hydrogen bonds of pretreated sugarcane bagasse arose at higher number. It also revealed that the cellulose content in the solid residue increased because the hemicelluloses fraction in raw materials was released by acid hydrolytic reaction.  相似文献   

15.
Oxidative lime pretreatment increases the enzymatic digestibility of lignocellulosic biomass primarily by removing lignin. In this study, recommended pretreatment conditions (reaction temperature, oxygen pressure, lime loading, and time) were determined for Dacotah switchgrass. Glucan and xylan overall hydrolysis yields (72 h, 15 FPU/g raw glucan) were measured for 105 different reaction conditions involving three different reactor configurations (very short term, short term, and long term). The short-term reactor was the most productive. At the recommended pretreatment condition (120 °C, 6.89 bar O2, 240 min), it achieved an overall glucan hydrolysis yield of 85.2 g glucan hydrolyzed/100 g raw glucan and an overall xylan yield of 50.1 g xylan hydrolyzed/100 g raw xylan. At this condition, glucan oligomers (1.80 g glucan recovered/100 g glucan in raw biomass) and xylan oligomers (25.20 g xylan recovered/100 g xylan in raw biomass) were recovered from the pretreatment liquor, which compensate for low pretreatment yields.  相似文献   

16.
In this work, we assess three different methods for the extraction of pectin from waste orange peels, using water as extracting solvent. “Hot-water”, Rapid Solid Liquid Dynamic (RSLD) and microwave-assisted extractions have been compared and evaluated in terms of amount and quality of extracted pectin, as well as embodied energy. This analysis provides useful guidelines for pectin production from food waste according to green procedures, enabling the identification of acidic “hot-water” as the most sustainable extraction route.  相似文献   

17.
Our over dependency on the fossil resource for industrial chemicals and fuels faces great challenges.Recently, the production of monophenols from lignin in lignocellulosic biomass is regarded as a promising process for sustainable biofuels. This article discusses the conversion of lignin in actual biomass directly to monophenols. The two step way including extraction of lignin from biomass and further degradation of the lignin oligomers to monophenols is especially discussed. The obtained monophenols can also be converted to chemicals with low-oxygen content via hydrodeoxygenation process. For extraction of lignin,co-solvent system is the most adopted for hydrolysis or solvolysis of lignin assisted by acid or alkaline catalysts. The structure of the obtained oligomers derived from lignin is discussed in detail. For lignin depolymerization, hydrogenolysis is an efficient method with the use of gaseous hydrogen or alcohols as hydrogen source. At the meantime, depolymerization mechanism and the route for repolymerization of the reaction intermediates are presented here. In hydrodeoxygenation process, metal catalysts, especially noble metal catalysts are required. The precise effects of the reaction solvents and catalysts on extraction and degradation of lignin need to be further investigated, and this will benefit to design more efficient strategies for lignin utilization.  相似文献   

18.
The first production of defibrillated celluloses from microalgal biomass using acid-free, TEMPO-free and bleach-free hydrothermal microwave processing is reported. Two routes were explored: i. direct microwave process of native microalgae (“standard”), and ii. scCO2 pre-treatment followed by microwave processing. ScCO2 was investigated as it is commonly used to extract lipids and generates considerable quantities of spent algal biomass. Defibrillation was evidenced in both cases to afford cellulosic strands, which progressively decreased in their width and length as the microwave processing temperature increased from 160 °C to 220 °C. Lower temperatures revealed aspect ratios similar to microfibrillated cellulose whilst at the highest temperature (220 °C), a mixture of microfibrillated cellulose and nanocrystals were evidenced. XRD studies showed similar patterns to cellulose I but also some unresolved peaks. The crystallinity index (CrI), determined by XRD, increased with increasing microwave processing temperature. The water holding capacity (WHC) of all materials was approximately 4.5 g H2O/g sample. The materials were able to form partially stable hydrogels, but only with those processed above 200 °C and at a concentration of 3 wt% in water. This unique work provides a new set of materials with potential applications in the packaging, food, pharmaceutical and cosmetic industries.  相似文献   

19.
Mountain pine beetle-killed lodgepole pine (Pinus contorta) chips were pretreated using the organosolv process, and their ease of subsequent enzymatic hydrolysis was assessed. The effect of varying pretreatment chemicals and solvents on the substrate’s physicochemical characteristics was also investigated. The chemicals employed were MgCl2, H2SO4, SO2, and NaOH, and the solvents were ethanol and butanol. It was apparent that the different pretreatments resulted in variations in both the chemical composition of the solid and liquid fractions as well in the extent of cellulolytic hydrolysis (ranging from 21% to 82% hydrolysis after 12 h). Pretreatment under acidic conditions resulted in substrates that were readily hydrolyzed despite the apparent contradiction that pretreatment under alkaline conditions resulted in increased delignification (approximately 7% and 10% residual lignin for alkaline conditions versus 17% to 19% for acidic conditions). Acidic pretreatments also resulted in lower cellulose degree of polymerization, shorter fiber lengths, and increased substrate porosity. The substrates generated when butanol/water mixtures were used as the pretreatment solvent were also hydrolyzed more readily than those generated with ethanol/water. This was likely due to the limited miscibility of the solvents resulting in an increased concentration of pretreatment chemicals in the aqueous layer and thus a higher pretreatment severity.  相似文献   

20.
Rice straw hydrotropic lignin was extracted from p-Toluene sulfonic acid (p-TsOH) fractionation with a different combined delignification factor (CDF). Hydrotropic lignin characterization was systematically investigated, and alkaline lignin was also studied for the contrast. Results showed that the hydrotropic rice straw lignin particle was in nanometer scopes. Compared with alkaline lignin, the hydrotropic lignin had greater molecular weight. NMR analysis showed that β-aryl ether linkage was well preserved at low severities, and the unsaturation in the side chain of hydrotropic lignin was high. H units and G units were preferentially degraded and subsequently condensed at high severity. High severity also resulted in the cleavage of part β-aryl ether linkage. 31P-NMR showed the decrease in aliphatic hydroxyl groups and the increasing carboxyl group content at high severity. The maximum weight loss temperature of the hydrotropic lignin was in the range of 330–350 °C, higher than the alkaline lignin, and the glass conversion temperature (Tg) of the hydrotropic lignin was in the range of 107–125 °C, lower than that of the alkaline lignin. The hydrotropic lignin has high β-aryl ether linkage content, high activity, nanoscale particle size, and low Tg, which is beneficial for its further valorization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号