首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Unsatisfactory oxygen mobility is a considerable barrier to the development of perovskites for low-temperature volatile organic compounds (VOCs) oxidation. This work introduced small amounts of dispersed non-metal boron into the LaCoO3 crystal through an easy sol-gel method to create more oxygen defects, which are conducive to the catalytic performance of propane (C3H8) oxidation. It reveals that moderate addition of boron successfully induces a high distortion of the LaCoO3 crystal, decreases the perovskite particle size, and produces a large proportion of bulk Co2+ species corresponding to abundant oxygen vacancies. Additionally, surface Co3+ species, as the acid sites, which are active for cleaving the C−H bonds of C3H8 molecules, are enriched. As a result, the LCB-7 (molar ratio of Co/B=0.93:0.07) displays the best C3H8 oxidation activity. Simultaneously, the above catalyst exhibits superior thermal stability against CO2 and H2O, lasting 200 h. This work provides a new strategy for modifying the catalytic VOCs oxidation performance of perovskites by the regulation of amorphous boron dispersion.  相似文献   

2.
The solubility products of basic cobalt(II) salts Co(OH)1.80(An)0.20, where An are NO3 and CH3COO, and Co(OH)1.50(CH3COO)0.50 were determined by the method of three variables. The stability of the salts Co(OH)1.80(An)0.20 against hydrolysis increases in the series < CH3COO < Cl. The absorption maxima of Co2+ ions in solutions, β-Co(OH)2 powders, and the pink Co(OH)1.50Cl0.5 salt are located in the frequency regions typical of the octahedral coordination; those of CoOH+ ions in solutions and powders of green basic cobalt salts are in the frequency regions typical of the tetrahedral coordination. A model for the formation and interconversion of basic cobalt salts with single-charged anions is proposed.  相似文献   

3.
Five complexes [Co3(Hpmad)6]·(4‐sb)2·(CH3COO)2·(H2O)2 ( 1 ), [Co3(Hpmad)6]·(3‐sb)2·(CH3COO)2·(H2O)0.5 ( 2 ), [Co(Hpmad)2(4‐sb)]n ( 3 ), [Co(Hpmad)2(3‐sb)]n ( 4 ) and {[Co(Hpmad)(SO4)(H2O)2]·H2O}n ( 5 ) [Hpmad is 2‐pyrimidineamidoxime, H2(4‐sb) is 4‐sulfobenzoic acid and H2(3‐sb) is 3‐sulfobenzoic acid], were prepared at room temperature. Complexes 1 – 5 were characterized by elemental analyses, single crystal X‐ray diffractions, powder X‐ray diffractions, infrared spectra, thermogravimetric analyses, fluorescence spectra and magnetic susceptibility measurements. Complexes 1 and 2 possess the linear trinuclear Co2+ structures. Complexes 3 and 4 exhibit similar one‐dimensional (1D) chains. Complex 5 comprises the 1D helical chain. The change of anion in cobalt salt from CH3COO? to Cl? to SO42? leads to the structural evolution from the linear trinuclear Co2+ structure to the 1D chain to the 1D helical chain. Complexes 1 – 5 exhibit the Hpmad‐based emissions. The magnetic properties of 1–5 were also investigated.  相似文献   

4.
A novel azo dye ligand, namely 1‐[(5‐mercapto‐1H‐1,2,4‐triazole‐3‐yl)diazenyl]naphthalen‐2‐ol (HL), was synthesized. Mn2+, Co2+, Ni2+, Cu2+ and UO22+ complexes were also prepared by the treatment of HL with Mn(CH3COO)2?4H2O, Co(CH3COO)2?4H2O, Ni(CH3COO)2?4H2O, Cu(CH3COO)2?H2O, CuCl2?2H2O, Cu(NO3)2?6H2O and UO2(NO3)2?6H2O. The structures of these metal chelates were confirmed using elemental, spectral, magnetic moment, molar conductance and thermal analyses. The analytical data confirmed the formation of the chelates in 1:1 (metal‐to‐ligand) ratio having the formula [ML(H2O)X]Y?H2O, where M is Mn2+, Co2+, Ni2+, Cu2+ or UO22+; X is Cl?, NO3? or CH3COO?; and Y is H2O. The azo compound acts in a monobasic bidentate manner via the nitrogen and oxygen atoms of azo and hydroxyl groups, respectively. All complexes were found to have tetrahedral structures, except the UO22+ complex that showed octahedral geometry. The mode of interaction between the synthesized complexes and calf thymus DNA was explored by the aid of absorption spectroscopy and viscosity measurements. The azo dye and its chelates were evaluated against the growth of various bacterial and fungal strains (Escherichia coli, Staphylococcus aureus, Aspergillus flavus and Candida albicans) with insight gained into the effect of type of metal centre, type of coordinated anion and position of the metal in the periodic table on the activity of the complexes. The geometric structure of the complexes was optimized using molecular modelling. The in vitro cytotoxicity of the synthesized compounds was tested against HEPG2 cell line.  相似文献   

5.
The title dinuclear CuII complex, [Cu2(C7H8NO2)2(C7H9NO2)2](CH3COO)2, has been synthesized by the reaction of Cu(CH3COO)2·H2O with pdmH2 (pdmH2 is pyridine‐2,6‐diyldi­methanol) in the presence of tetra­butyl­ammonium hydro­xide. The title complex contains a centrosymmetric Cu2O2 core and each CuII atom has distorted octahedral geometry. Molecular [Cu2(pdmH)2(pdmH2)]2+ cations are connected by hydrogen bonds involving the CH3COO anions, forming one‐dimensional chains along the a axis.  相似文献   

6.
Three Co(II) complexes of triethanolamine (TEA) namely [Co(N(CH2CH2OH)3)2](NO3)2 (1), [Co(N(CH2CH2OH)3)2](OOC(CH2)2COO) (2) and [Co2(N(CH2CH2OH)3)2(NO3)2(OOC(CH2)2COO)] (3) were synthesized and characterized by physicochemical and spectroscopic methods. The first two complexes are cationic and are formed by Co2+ cations coordinated by two TEA ligands plus nitrate or succinate anions, respectively. The equilibrium geometries of the [Co(TEA)2]2+ cations have been optimized at the B3LYP/cc-pVDZ level. Complex 3 is a product of the reaction between cationic complexes 1 and 2.  相似文献   

7.
制备方法对Co-MOR催化剂CH4选择还原NO性能的影响   总被引:1,自引:0,他引:1  
采用离子交换法、浸渍法制备一系列的Co-MOR 催化剂, 并将其用于CH4选择性催化还原 NOx(CH4-SCR)反应. 运用X 射线衍射(XRD)、X 射线荧光光谱(XRF)、扫描电子显微镜(SEM)、紫外-拉曼(UVRaman)光谱、X射线光电子能谱(XPS)、NO程序升温脱附(NO-TPD)等手段对催化剂进行了表征. 结果表明, 浸渍法制备的催化剂, Co以Co3O4形式存在; 而离子交换法制备的催化剂, Co以离子形式进入丝光沸石(MOR)骨架之中, 在催化剂上形成更多的Co2+和[Co-O-Co]2+, 形成更均匀NO吸附中心和CH4-SCR反应活性中心. 催化剂活性评价表明离子交换法制备的催化剂具有更宽的活性温度区间, Co(0.30)-MOR 催化剂在327-450℃温度范围内NO转化率大于50%.  相似文献   

8.
A series of large scale MxCo3−xO4 (M=Co, Ni, Zn) nanoarray catalysts have been cost‐effectively integrated onto large commercial cordierite monolithic substrates to greatly enhance the catalyst utilization efficiency. The monolithically integrated spinel nanoarrays exhibit tunable catalytic performance (as revealed by spectroscopy characterization and parallel first‐principles calculations) toward low‐temperature CO and CH4 oxidation by selective cation occupancy and concentration, which lead to controlled adsorption–desorption behavior and surface defect population. This provides a feasible approach for scalable fabrication and rational manipulation of metal oxide nanoarray catalysts applicable at low temperatures for various catalytic reactions.  相似文献   

9.
A series of large scale MxCo3?xO4 (M=Co, Ni, Zn) nanoarray catalysts have been cost‐effectively integrated onto large commercial cordierite monolithic substrates to greatly enhance the catalyst utilization efficiency. The monolithically integrated spinel nanoarrays exhibit tunable catalytic performance (as revealed by spectroscopy characterization and parallel first‐principles calculations) toward low‐temperature CO and CH4 oxidation by selective cation occupancy and concentration, which lead to controlled adsorption–desorption behavior and surface defect population. This provides a feasible approach for scalable fabrication and rational manipulation of metal oxide nanoarray catalysts applicable at low temperatures for various catalytic reactions.  相似文献   

10.
Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La2O2CO3 under H2 pretreatment was investigated by techniques of XRD, TPR and TEM. The results suggest that a much higher dispersion of copper significantly enhanced the reduction of cobalt, and a stronger interaction between copper and cobalt ions in LaCoO3 particles led to the formation of bi-metallic Cu-Co particles in the reduced catalysts and the enrichment of Co on the surface of bimetallic particles. The prepared catalysts were highly active and selective for the alcohol synthesis from syngas due to the presence of copper-modified Co2C species.  相似文献   

11.
采用多种物理化学手段研究了在模拟的轻型柴油车尾气中不同Co担载量及Cu掺杂的Co/ZSM-5催化剂的Co组分分散状态、可还原性、NO吸附脱附性质对C3H8选择性催化还原NOx性能的影响。结果表明,浸渍法制备的Co/ZSM-5催化剂上既有外表面上的Co3+和Co2+物种,也有孔内的Co2+离子。富氧条件下Co/ZSM-5催化剂上C3H8选择性催化还原NOx的活性主要与ZSM-5载体孔外表面分散的CoOx物种中的钴离子可还原能力和NO吸附脱附性能密切相关。Co/ZSM-5催化剂上适宜的Co担载量约为4.0wt%,低担载量时随Co担载量增加,表面CoOx物种中钴离子可还原能力增强,C3H8选择性催化还原NOx的低温转化活性增加;高担载量时,随Co担载量增加,单位Co离子的NO吸附量的减少以及催化剂表面活性中心数的减少,导致了Co/ZSM-5催化剂NOx的转化率和催化剂比速率(k)的下降。孔外表面Co3O4晶体的存在使催化剂表面产生较强的NO吸附,并在高温时有利于C3H8的氧化燃烧,使C3H8选择性催化还原NOx的活性降低。  相似文献   

12.
A series of cation–anion complexes derived by 2,2′-dipyridylamine (Hdpa) and carboxylate ligands with formulas [Ni(Hdpa)2(CH3COO)]Cl(CH3OH) (1), [Co(Hdpa)2(CH3COO)]Cl(CH3OH) (2), [Ni(Hdpa)2(CH3CH2CH2COO)]Cl (3), [Co(Hdpa)2(CH3CH2CH2COO)]Cl (4), [Ni(Hdpa)2(C6H5COO)]Cl (5), and [Co(Hdpa)2(C6H5COO)]Cl (6), were synthesized and characterized by IR, elemental analysis, MS(ESI), TG analysis, UV-Vis, and fluorescence spectra. X-ray single crystal structural analysis showed that the coordination geometries of metal ions in these complexes are similar and they are cation–anion species. The hydrogen-bonding structures are 1-D chains through the N–H···Cl bonds. There are weak stacking interactions between pyridine rings in 14, while there are no stacking interactions in 5 and 6. We have investigated the transesterification of phenyl acetate with methanol catalyzed by 16 under mild conditions; 14 are homogeneous catalysts while 5 and 6 are heterogeneous catalysts due to their poor solubility in methanol. Cobalt complexes exhibit higher catalytic activities than corresponding nickel complexes. Complex 4 is the best catalyst of these six complexes.  相似文献   

13.
The title compound, {[Co(C8H7NO2)2(H2O)2](NO3)2}n, is the first d‐metal ion complex involving bidentate bridging of a β‐dialdehyde group. The Co2+ ion is situated on an inversion centre and adopts an octahedral coordination with four equatorial aldehyde O atoms [Co—O = 2.0910 (14) and 2.1083 (14) Å] and two axial aqua ligands [Co—O = 2.0631 (13) Å]. The title compound has a two‐dimensional square‐grid framework structure supported by propane‐1,3‐dionate O:O′‐bridges between the metal ions. The organic ligand itself possesses a zwitterionic structure, involving conjugated anionic propane‐1,3‐dionate and cationic pyridinium fragments. Hydrogen bonding between coordinated water molecules, the pyridinium NH group and the nitrate anions [O...O = 2.749 (2) and 2.766 (3) Å, and N...O = 2.864 (3) Å] is essential for the crystal packing.  相似文献   

14.
Metal–organic framework (MOF)‐derived Co‐N‐C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co‐N‐C catalyst achieves superior activity, better acid resistance, and improved long‐term stability compared with nanoparticles synthesized by a similar route. High‐angle annular dark‐field–scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and X‐ray absorption fine structure characterizations reveal the formation of CoIINx centers as active sites. The optimal low‐cost catalyst is a promising candidate for liquid H2 generation.  相似文献   

15.
In the present work, experimental and theoretical structural studies of two new nitazoxanide (NTZ) complexes, [Co(NTZ)(NO3)2(OH2)] ( 1 ) and [Ni(NTZ)(CH3COO)(OH2)]·CH3COO ( 2 ) were reported. The susceptibility of Staphylococcus aureus and Escherichia coli towards NTZ and its complexes was assessed. NTZ behaves as a monodentate ligand via the thiazole N atom forming distorted octahedral and tetrahedral complexes with Co(II) and Ni(II) ions, respectively. The d‐d transitions were assigned by the aid of time‐dependent density functional theory calculations. The magnetic susceptibility value of 1 remains unchanged in the temperature range of 298–77K, while that of 2 decreases linearly with the temperature to attain 2.79 μB at 77K. Coordination of NTZ (0.084 μmol ml?1) to Co(II) ( 1 ) (0.028 μmol ml?1) and Ni(II) ions ( 2 ) (0.079 μmol ml?1) leads to an improvement in the toxicity against S. aureus.  相似文献   

16.
Co2(CO)8 catalyzes the ring‐opening copolymerization of propylene oxide with CO to afford the polyester in the presence of various amine cocatalysts. The 1H and 13C{1H} NMR spectra of the polyester, obtained by the Co2(CO)8–3‐hydroxypyridine catalyst, show the following structure ? [CH2? CH(CH3)? O? CO]n? . The Co2(CO)8–phenol catalyst gives the polyester, which contains the partial structural unit formed through the ring‐opening copolymerization of tetrahydrofuran with CO. The bidentate amines, such as bipyridine and N,N,N′,N′‐tetramethylethylenediamine, enhance the Co complex‐catalyzed copolymerization, which produces the polyester with a regulated structure. Acylcobalt complexes, (RCO)Co(CO)n (R = Me or CH2Ph), prepared in situ, do not catalyze the copolymerization even in the presence of pyridine. This suggests that the chain growth involves the intermolecular nucleophilic addition of the OH group of the intermediate complex to the acyl–cobalt bond, forming an ester bond rather than the insertion of propylene oxide into the acyl–cobalt bond. Co2(CO)8? Ru3(CO)12 mixtures also bring about the copolymerization of propylene oxide with CO. The molar ratio of Ru to Co affects the yield, molecular weight, and structure of the produced copolymer. The catalysis is ascribed to the Ru? Co mixed‐metal cluster formed in the reaction mixture. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4530–4537, 2002  相似文献   

17.
The microstructural properties of dry‐grinding derived Co3O4 catalysts pretreated under different atmospheres, in relation to the activities on CO oxidation were investigated. The Co3O4 synthesized by soft reactive grinding and pretreated with O2 resulted in the best activity, with 100% conversion of CO at ?52 °C, superior to that of Co3O4 pretreated with He. To find out the active sites on Co3O4 for low temperature CO oxidation, the characterizations of the cobalt oxides had been investigated by means of N2 physisorption, XRD, TEM, H2‐TPR, CO‐titration, XPS and O2‐TPD technologies. XPS of Co2p results show that it is difficult to ascribe the difference in catalytic performance to the surface concentration of active Co3+ sites. A correlation between the activity and the CO‐titration and O2‐TPD results for Co3O4 reveals that a high abundance of readily accessible superficial electrophilic oxygen (O?) species is important for achieving a high activity. Therefore, CO oxidation takes place on the surface active oxygen sites in Co3O4 crystallites via the suprafacial mechanism.  相似文献   

18.
Information on the solvation of thiolato complex cations [Co(en)2(SCH2COO)]+ [Co(en)2(SCH2CH(COO)NH2)]+, [Co(en)2(SCH2CH2NH2)]2+, sulfenato complexes [Co(en)2(SOCH2COO)]+ [Co(en)2{SOCH2CH(COO)NH2}]+, [Co(en)2(SOCH2CH2NH2)]2+, the sulfinato [Co(en)2{SO2CH2CH(COO)NH2}]+, [Co(en)2(SO2CH2CH2NH2)]2+ as well as of [Co(en)3]3+ has been obtained from solubility measurements in MeCN–H2O mixtures at 298.2 K. The single-ion Gibbs energies of transfer of the CoIII complexes were derived from the solubilities of picrate and perchlorate salts for the full range of MeCN–H2O mixtures. Single-ion Gibbs energies of transfer for the perchlorate ion are given. The effects of the solvent mixtures were interpreted in the framework of chemical bond formation between the ions and the individual solvent molecules.  相似文献   

19.
Bimetallic cobalt‐based spinel is sparking much interest, most notably for its excellent bifunctional performance. However, the effect of Fe3+ doping in Co3O4 spinel remains poorly understood, mainly because the surface state of a catalyst is difficult to characterize. Herein, a bifunctional oxygen electrode composed of spinel Co2FeO4/(Co0.72Fe0.28)Td(Co1.28Fe0.72)OctO4 nanoparticles grown on N‐doped carbon nanotubes (NCNTs) is designed, which exhibits superior performance to state‐of‐the‐art noble metal catalysts. Theoretical calculations and magnetic measurements reveal that the introduction of Fe3+ ions into the Co3O4 network causes delocalization of the Co 3d electrons and spin‐state transition. Fe3+ ions can effectively activate adjacent Co3+ ions under the action of both spin and charge effect, resulting in the enhanced intrinsic oxygen catalytic activity of the hybrid spinel Co2FeO4. This work provides not only a promising bifunctional electrode for zinc–air batteries, but also offers a new insight to understand the Co‐Fe spinel oxides for oxygen electrocatalysis.  相似文献   

20.
Tetrakis[heptadecafluorononyl] substituted phthalocyanine complexes were prepared by template synthesis from 4‐(heptadecafluorononyloxy)phthalonitrile with Co(CH3COO)·2H2O or PdCl2 in 2‐N, N‐dimethylaminoethanol. The corresponding phthalonitrile was obtained from heptadecafluorononan‐1‐ol and 4‐nitrophthalonitrile with K2CO3 in DMF at 50 °C. The structures of the compounds were characterized by elemental analysis, FTIR, UV–vis and MALDI‐TOF MS spectroscopic methods. Metallophthalocyanines are soluble in fluoroalkanes such as perfluoromethylcyclohexane (PFMCH). The complexes were tested as catalysts for benzyl alcohol oxidation with tert‐butylhydroperoxide (TBHP) in an organic–fluorous biphasic system (n‐hexane–PFMCH). The oxidation of benzyl alcohol was also tested with different oxidants, such as hydrogen peroxide, m‐chloroperoxybenzoic acid, molecular oxygen and oxone in n‐hexane–PFMCH. TBHP was found to be the best oxidant for benzyl alcohol oxidation since higher conversion and selectivity were observed when this oxidant was used. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号