首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Carbon dots (CDs) have attracted attention in metal‐free afterglow materials, but most CDs were heteroatom‐containing and the afterglow emissions are still limited to the short‐wavelength region. A universal approach to activate the room‐temperature phosphorescence (RTP) of both heteroatom‐free and heteroatom‐containing CDs was developed by one‐step heat treatment of CDs and boric acid (BA). The introduction of an electron‐withdrawing boron atom in composites can greatly reduce the energy gap between the singlet and triplet state; the formed glassy state can effectively protect the excited triplet states of CDs from nonradiative deactivation. A universal host for embedding CDs to achieve long‐lifetime and multi‐color (blue, green, green‐yellow and orange) RTP via a low cost, quick and facile process was developed. Based on their distinctive RTP performances, the applications of these CD‐based RTP materials in information encryption and decryption are also proposed and demonstrated.  相似文献   

2.
High‐efficiency red room‐temperature phosphorescence (RTP) emissions have been achieved by embedding carbon dots (CDs) in crystalline Mn‐containing open‐framework matrices. The rationale of this strategy relies on two factors: 1) the carbon source, which affects the triplet energy levels of the resulting CDs and thus the spectral overlap and 2) the coordination geometry of the Mn atoms in the crystalline frameworks, which determines the crystal‐field splitting and thus the emission spectra. Embedding the carbon dots into a matrix with 6‐coordinate Mn centers resulted in a strong red RTP with a phosphorescence efficiency of up to 9.6 %, which is higher than that of most reported red RTP materials. The composite material has an ultrahigh optical stability in the presence of strong oxidants, various organic solvents, and strong ultraviolet radiation. A green‐yellow RTP composite was also prepared by using a matrix with 4‐coordinate Mn centers and different carbon precursors.  相似文献   

3.
Carbon dots (CDs) with dual‐emissive, robust, and aggregation‐induced RTP characteristics are reported for the first time. The TA‐CDs are prepared via hydrothermal treatment of trimellitic acid and exhibit unique white prompt and yellow RTP emissions in solid state under UV excitation (365 nm) on and off, respectively. The yellow RTP emission of TA‐CDs powder should be resulted from the formation of a new excited triplet state due to their aggregation, and the white prompt emission is due to their blue fluorescence and yellow RTP dual‐emissive nature. The RTP emission of TA‐CDs powder was highly stable under grinding, which is very rare amongst traditional pure organic RTP materials. To employ the unique characteristics of TA‐CDs, advanced anti‐counterfeiting and information encryption methodologies (water‐stimuli‐response producing RTP) were preliminarily investigated.  相似文献   

4.
Polymer carbon dots (PCDs) are proposed as a new class of room‐temperature phosphorescence (RTP) materials. The abundant energy levels in PCDs increase the probability of intersystem crossing (ISC) and their covalently crosslinked framework structures greatly suppress the nonradiative transitions. The efficient methods allow the manufacture of PCDs with unique RTP properties in air without additional metal complexation or complicated matrix composition. They thus provide a route towards the rational design of metal‐free RTP materials that may be synthesized easily. Furthermore, we find that RTP is associated with a crosslink‐enhanced emission (CEE) effect, which provides further routes to design improved PCDs with diverse RTP performance. Our results show the potential of PCDs as a universal route to achieve effective metal‐free RTP.  相似文献   

5.
The design and preparation of metal‐free organic materials that exhibit room‐temperature phosphorescence (RTP) is a very attractive topic owing to potential applications in organic optoelectronic devices. Herein, we present a facile approach to efficient and long‐lived organic RTP involving the doping of N‐phenylnaphthalen‐2‐amine (PNA) or its derivatives into a crystalline 4,4′‐dibromobiphenyl (DBBP) matrix. The resulting materials showed strong and persistent RTP emission with a quantum efficiency of approximately 20 % and a lifetime of a few to more than 100 milliseconds. Bright white dual emission containing blue fluorescence and yellowish‐green RTP from the PNA‐doped DBBP crystals was also confirmed by Commission Internationale de l'Eclairage (CIE) coordinates of (x=0.29–0.31, y=0.38–0.41).  相似文献   

6.
Solid‐state materials with efficient room‐temperature phosphorescence (RTP) emissions have found widespread applications in materials science, while liquid or solution‐phase pure organic RTP emission systems has been rarely reported, because of the nonradiative decay and quenchers from the liquid medium. Reported here is the first example of visible‐light‐excited pure organic RTP in aqueous solution by using a supramolecular host‐guest assembly strategy. The unique cucurbit[8]uril‐mediated quaternary stacking structure allows tunable photoluminescence and visible‐light excitation, enabling the fabrication of multicolor hydrogels and cell imaging. The present assembly‐induced emission approach, as a proof of concept, contributes to the construction of novel metal‐free RTP systems with tunable photoluminescence in aqueous solution, providing broad opportunities for further applications in biological imaging, detection, optical sensors, and so forth.  相似文献   

7.
Long‐lifetime room‐temperature phosphorescence (RTP) materials are important for many applications, but they are highly challenging materials owing to the spin‐forbidden nature of triplet exciton transitions. Herein, a facile, quick and gram‐scale method for the preparation of ultralong RTP (URTP) carbon dots (CDs) was developed via microwave‐assisted heating of ethanolamine and phosphoric acid aqueous solution. The CDs exhibit the longest RTP lifetime, 1.46 s (more than 10 s to naked eye) for CDs‐based materials to date. The doping of N and P elements is critical for the URTP which is considered to be favored by a n→π* transition facilitating intersystem crossing (ISC) for effectively populating triplet excitons. In addition, possibilities of formation of hydrogen bonds in the interior of the CDs may also play a significant role in producing RTP. Potential applications of the URTP CDs in the fields of anti‐counterfeiting and information protection are proposed and demonstrated.  相似文献   

8.
Long‐lifetime room‐temperature phosphorescence (RTP) materials are important for many applications, but they are highly challenging materials owing to the spin‐forbidden nature of triplet exciton transitions. Herein, a facile, quick and gram‐scale method for the preparation of ultralong RTP (URTP) carbon dots (CDs) was developed via microwave‐assisted heating of ethanolamine and phosphoric acid aqueous solution. The CDs exhibit the longest RTP lifetime, 1.46 s (more than 10 s to naked eye) for CDs‐based materials to date. The doping of N and P elements is critical for the URTP which is considered to be favored by a n→π* transition facilitating intersystem crossing (ISC) for effectively populating triplet excitons. In addition, possibilities of formation of hydrogen bonds in the interior of the CDs may also play a significant role in producing RTP. Potential applications of the URTP CDs in the fields of anti‐counterfeiting and information protection are proposed and demonstrated.  相似文献   

9.
Organic room-temperature phosphorescence (RTP) materials are very attractive, but there is still a challenge to achieve RTP for their practical applications under visible light excitation (λ > 400 nm) because of the implement for the most organic RTP is under ultraviolet light. Herein, a simple tactics for inhibiting the vibrational dissipation of three amorphous phenanthroline derivatives by doping them into polyvinyl alcohol (PVA) matrix was utilized to afford visible-light excitation RTP. By using this method, on account of the mutual H-bonding and confinement effect with PVA matrix, a series of organic RTP materials with blue-green phosphorescence emission were obtained under visible-light excitation. The afterglow colors of RTP materials can be adjusted by co-doping the available fluorescence dyes (RhB or Rh6G) into the PVA films through a triplet-to-singlet Förster resonance energy transfer. However, the H-bonding is easily broken by water molecules resulting in the RTP phenomenon disappears. Hence, Aphen-epoxy resin composite system was constructed to overcome this drawback. It is shown that the composite still has good phosphorescence properties after soaking in water for 7 days. The superior RTP of the amorphous phenanthroline derivatives in processable polymer matrices endows these materials with a highly potential for the night warning clothing coating and information encryption.  相似文献   

10.
Room temperature phosphorescence(RTP) is important in both organic electronics and encryption. Despite rapid advances, a universal approach to robust and tunable RTP materials based on amorphous polymers remains a formidable challenge. Here, we present a strategy that uses three-dimensional(3 D)confinement of carbon dots in a polymer network to achieve ultra-long lifetime phosphorescence. The RTP of the as-obtained materials was not quenched in different polar organic solvents and the lifetime o...  相似文献   

11.
Supramolecular co‐assembling terpyridine‐derivatives with nanoclay ( LP ) are exploited to acquire efficient amorphous room‐temperature phosphorescence (RTP). Experimental and theoretical investigations reveal that this co‐assembly not only brings about a configuration transformation from the trans‐trans ( a ) to the cis‐trans ( a′′ ) form via the protonating process, significantly narrowing the singlet‐triplet energy gap, thereby effectively facilitating the single‐triplet ISC processes, but also well protects the triplet state and suppresses the nonradiative transitions via restricting molecular rotation and vibration by the hydrogen‐bond interactions between them. Additionally, the flexible and transparent films, through co‐assembling 1 @ LP (or 2 @ LP ) with polyvinyl alcohol (PVA), also display excellent phosphorescence performance. Owing to their distinctive RTP performances, the RH sensing and high‐level data encryption are achieved.  相似文献   

12.
A D‐A‐D′ type pure organic molecule, named ODFRCZ, has unique triple‐emission character covering fluorescence, phosphorescence, and delayed fluorescence (DF). The phosphorescence of ODFRCZ has a rather long lifetime of about 350 ms at room temperature. One dimer of ODFRCZ with enhanced parallel molecular packing acts more effectively to prompt ISC processes, which further generates room‐temperature phosphorescence (RTP), owing to the larger transition dipole moment and closer energy level between S1 and Tn. ODFRCZ is a rare example of an organic RTP molecule that shows dual‐stimuli responsiveness of dual‐mode mechanochromism (fluorescence red‐shift and RTP/DF on‐off switch) and reversible crystal‐state photochromism. This work may broaden the knowledge for stimuli‐responsive RTP organic molecules and lay the foundation for their wide‐scale applications.  相似文献   

13.
Stimuli‐responsive photoluminescent (PL) materials have been widely used as fluorescent ink for data security applications. However, traditional fluorescent inks are limited in maintaining the secrecy of information because the inks are usually visible by naked eyes either under ambient light or UV‐light illumination. Here, we introduced metal‐free water‐soluble graphitic carbon nitride quantum dots (g‐CNQDs) as invisible security ink for information coding, encryption, and decryption. The information written by the g‐CNQDs is invisible in ambient light and UV light, but it can be readable by a fluorescence microplate reader. Moreover, the information can be encrypted and decrypted by using oxalic acid and sodium bicarbonate as encryption reagent and decryption reagent, respectively. Our findings provide new opportunities for high‐level information coding and protection by using water‐soluble g‐CNQDs as invisible security ink.  相似文献   

14.
Supramolecular macrocyclic hosts have long been used in smart materials. However, their triplet emission and regulation at crystal level is rarely studied. Herein, ultralong and universal room‐temperature phosphorescence (RTP) is reported for traditional crown ethers. A supramolecular strategy involving chain length adjustment and morphological locking through complexation with K+ was explored as a general method to tune the phosphorescence lifetime in the solid state. A maximum 10‐fold increase of lifetime after complex formation accompanied with by invisible to visible phosphorescence was achieved. A deep encryption based on this activated RTP strategy was also facilely fabricated. This work thus opens a new world for supramolecular macrocycles and their intrinsic guest responsiveness offers a new avenue for versatile smart luminescent materials.  相似文献   

15.
Room-temperature phosphorescence (RTP) polymers, whose emission can persist for a long period after photoexcitation, are of great importance for practical applications. Herein, dynamic covalent boronic ester linkages with internal B−N coordination are incorporated into a commercial epoxy matrix. The reversible dissociation of B−N bonds upon loading provides an efficient energy dissipation pathway for the epoxy network, while the rigid epoxy matrix can inhibit the quenching of triplet excitons in boronic esters. The obtained polymers exhibit enhanced mechanical toughness (12.26 MJ m−3), ultralong RTP (τ=540.4 ms), and shape memory behavior. Notably, there is no apparent decrease in the RTP property upon prolonged immersion in various solvents because the networks are robust. Moreover, the dynamic bonds endow the polymers with superior reprocessablity and recyclability. These novel properties have led to their potential application for information encryption and anti-counterfeiting.  相似文献   

16.
A D‐A‐D′ type pure organic molecule, named ODFRCZ, has unique triple‐emission character covering fluorescence, phosphorescence, and delayed fluorescence (DF). The phosphorescence of ODFRCZ has a rather long lifetime of about 350 ms at room temperature. One dimer of ODFRCZ with enhanced parallel molecular packing acts more effectively to prompt ISC processes, which further generates room‐temperature phosphorescence (RTP), owing to the larger transition dipole moment and closer energy level between S1 and Tn. ODFRCZ is a rare example of an organic RTP molecule that shows dual‐stimuli responsiveness of dual‐mode mechanochromism (fluorescence red‐shift and RTP/DF on‐off switch) and reversible crystal‐state photochromism. This work may broaden the knowledge for stimuli‐responsive RTP organic molecules and lay the foundation for their wide‐scale applications.  相似文献   

17.
Photoluminescence (PL), up‐conversion PL (UCPL), and phosphorescence are three kinds of phenomena common to light‐emitting materials, but it is very difficult to observe all of them simultaneously when they are derived from a single material at room temperature. For the first time, triple‐mode emission (that is, PL, UCPL, and room temperature phosphorescence (RTP)) is reported, which relies on a composite of the luminescent carbon dots (CDs) prepared from m‐phenylenediamine and poly(vinyl alcohol) (PVA). Moreover, the CDs‐PVA aqueous dispersion is nearly colorless and demonstrates promise as a triple‐mode emission ink in the field of advanced anti‐counterfeiting.  相似文献   

18.
Although quantum dot (QD)‐based room temperature phosphorescence (RTP) probes are promising for practical applications in complex matrixes such as environmental, food and biological samples, current QD‐based‐RTP probes are not only quite limited but also exclusively based on the RTP quenching mechanism. Here we report an ascorbic acid (AA) induced phosphorescence enhancement of sodium tripolyphosphate‐capped Mn‐doped ZnS QDs, and its application for turn‐on RTP detection. The chelating ability allows AA to extract the Mn and Zn from the surface of the QDs and to generate more holes which are subsequently trapped by Mn2+, while the reducing property permits AA to reduce Mn3+ to Mn2+ in the excited state, thereby enhancing the excitation and orange emission of the QDs. The enhanced RTP intensity of the QDs increases linearly with the concentration of AA in the range of 0.05–0.8 μM . Thus, a QD‐based RTP probe for AA is developed. The proposed QD‐based turn‐on RTP probe avoids tedious sample pretreatment, and offers good sensitivity and selectivity for AA in the presence of the main relevant metal ions and other molecules in biological fluids. The limit of detection (3s) of the developed method is 9 nM AA, and the relative standard deviation is 4.8 % for 11 replicate detections of 0.1 μM AA. The developed method is successfully applied to the analysis of real samples of human urine and plasma for AA with quantitative recoveries from 96 to 105 %.  相似文献   

19.
《中国化学快报》2021,32(12):3907-3910
Carbon dots (CDs) with fluorescence (FL) and room-temperature phosphorescence (RTP) optical properties have attracted dramatically growing interest in anti-counterfeiting application. Herein, color-tunable and stable FL and ultralong RTP (to naked eyes ~14 s) are successfully achieved in CDs system. Encoding information and patterns fabricated by directly screen-printing method are invisible to eyes under natural light. Interestingly, clear and multicolor patterns with tunable FL and RTP emissions are identified under the 365 nm, 395 nm and 465 nm excitation and removal of them, indicating potential application of carbon dots with different FL and RTP outputs in the high-level photonic anti-counterfeiting field.  相似文献   

20.
Several strategies have been adopted to design an artificial light‐harvesting system in which light energy is captured by peripheral chromophores and it is subsequently transferred to the core via energy transfer. A composite of carbon dots and dye‐encapsulated BSA‐protein‐capped gold nanoclusters (AuNCs) has been developed for efficient light harvesting and white light generation. Carbon dots (C‐dots) act as donor and AuNCs capped with BSA protein act as acceptor. Analysis reveals that energy transfer increases from 63 % to 83 % in presence of coumarin dye (C153), which enhances the cascade energy transfer from carbon dots to AuNCs. Bright white light emission with a quantum yield of 19 % under the 375 nm excitation wavelength is achieved by changing the ratio of components. Interesting findings reveal that the efficient energy transfer in carbon‐dot–metal‐cluster nanocomposites may open up new possibilities in designing artificial light harvesting systems for future applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号