首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this note, a non‐standard finite difference (NSFD) scheme is proposed for an advection‐diffusion‐reaction equation with nonlinear reaction term. We first study the diffusion‐free case of this equation, that is, an advection‐reaction equation. Two exact finite difference schemes are constructed for the advection‐reaction equation by the method of characteristics. As these exact schemes are complicated and are not convenient to use, an NSFD scheme is derived from the exact scheme. Then, the NSFD scheme for the advection‐reaction equation is combined with a finite difference space‐approximation of the diffusion term to provide a NSFD scheme for the advection‐diffusion‐reaction equation. This new scheme could preserve the fixed points, the positivity, and the boundedness of the solution of the original equation. Numerical experiments verify the validity of our analytical results. Copyright © 2014 JohnWiley & Sons, Ltd.  相似文献   

2.
Nonhomogeneous Poisson processes (NHPPs) are often used to model failure data from repairable systems, and there is thus a need to check model fit for such models. We study the problem of obtaining exact goodness‐of‐fit tests for parametric NHPPs. The idea is to use conditional tests given a sufficient statistic under the null hypothesis model. The tests are performed by simulating conditional samples given the sufficient statistic. Algorithms are presented for testing goodness‐of‐fit for the power law and the log‐linear law NHPP models. It is noted that while exact algorithms for the power law case are well known in the literature, the availability of such algorithms for the log‐linear case seems to be less known. A data example, as well as simulations, are considered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
This paper provides the distribution of order statistics from a multivariate Birnbaum‐Saunders (GMBS) distribution which can be used in the reliability and lifetime analyses. Proposing a new generalization of Birnbaum‐Saunders distribution based on the unified skew‐elliptical model, some properties of the order statistics are also studied.  相似文献   

4.
In this paper, we obtain the existence of a radial solution for some elliptic nonlocal problem with constraints. The problem is described as stationary state of some evolutionary models provided the pressure function conveys some form arising from statistical mechanics. To be more specific, we consider the following forms of the statistics: Michie‐King, Maxwell‐Boltzmann, Fermi‐Dirac, Bose‐Einstein, and polytrope. The most recent models were suggested by H. J. de Vega at al. and P. H. Chavanis et al.. We prove the continuous dependence of stationary solutions on parameters for the given statistics.  相似文献   

5.
The cubic B‐spline collocation scheme is implemented to find numerical solution of the generalized Burger's–Huxley equation. The scheme is based on the finite‐difference formulation for time integration and cubic B‐spline functions for space integration. Convergence of the scheme is discussed through standard convergence analysis. The proposed scheme is of second‐order convergent. The accuracy of the proposed method is demonstrated by four test problems. The numerical results are found to be in good agreement with the exact solutions. Results are compared with other results given in literature. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

6.
In this article, a new stabilized finite element method is proposed and analyzed for advection‐diffusion‐reaction equations. The key feature is that both the mesh‐dependent Péclet number and the mesh‐dependent Damköhler number are reasonably incorporated into the newly designed stabilization parameter. The error estimates are established, where, up to the regularity‐norm of the exact solution, the explicit‐dependence of the diffusivity, advection, reaction, and mesh size (or the dependence of the mesh‐dependent Péclet number and the mesh‐dependent Damköhler number) is revealed. Such dependence in the error bounds provides a mathematical justification on the effectiveness of the proposed method for any values of diffusivity, advection, dissipative reaction, and mesh size. Numerical results are presented to illustrate the performance of the method. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 616–645, 2016  相似文献   

7.
Modeling microstructures is an interesting problem not just in materials science, but also in mathematics and statistics. The most basic model for steel microstructure is the Poisson‐Voronoi diagram. It has mathematically attractive properties and it has been used in the approximation of single‐phase steel microstructures. The aim of this article is to develop methods that can be used to test whether a real steel microstructure can be approximated by such a model. Therefore, a general framework for testing the Poisson‐Voronoi assumption based on images of two‐dimension sections of real metals is set out. Following two different approaches, according to the use or not of periodic boundary conditions, three different model tests are proposed. The first two are based on the coefficient of variation and the cumulative distribution function of the cells area. The third exploits tools from to topological data analysis, such as persistence landscapes.  相似文献   

8.
In this article, we obtain local energy and momentum conservation laws for the Klein‐Gordon‐Schrödinger equations, which are independent of the boundary condition and more essential than the global conservation laws. Based on the rule that the numerical methods should preserve the intrinsic properties as much as possible, we propose local energy‐ and momentum‐preserving schemes for the equations. The merit of the proposed schemes is that the local energy/momentum conservation law is conserved exactly in any time‐space region. With suitable boundary conditions, the schemes will be charge‐ and energy‐/momentum‐preserving. Nonlinear analysis shows LEP schemes are unconditionally stable and the numerical solutions converge to the exact solutions with order . The theoretical properties are verified by numerical experiments. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1329–1351, 2017  相似文献   

9.
In this article, we consider a new technique that allows us to overcome the well‐known restriction of Godunov's theorem. According to Godunov's theorem, a second‐order explicit monotone scheme does not exist. The techniques in the construction of high‐resolution schemes with monotone properties near the discontinuities of the solution lie in choosing of one of two high‐resolution numerical solutions computed on different stencils. The criterion for choosing the final solution is proposed. Results of numerical tests that compare with the exact solution and with the numerical solution obtained by the first‐order monotone scheme are presented. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 262–276, 2001  相似文献   

10.
A consistent Riccati expansion (CRE) is proposed to solve the (2+1)‐dimensional modified dispersive water‐wave (MDWW) system. It is proved that the MDWW system is CRE solvable. Furthermore, new exact interaction solutions, namely, soliton‐trigonometric waves, trigonometric waves‐soliton, soliton‐cosine periodic waves, and soliton‐cnoidal waves are explicitly derived.  相似文献   

11.
The advection‐diffusion equation has a long history as a benchmark for numerical methods. Taylor‐Galerkin methods are used together with the type of splines known as B‐splines to construct the approximation functions over the finite elements for the solution of time‐dependent advection‐diffusion problems. If advection dominates over diffusion, the numerical solution is difficult especially if boundary layers are to be resolved. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show the behavior of the method with emphasis on treatment of boundary conditions. Taylor‐Galerkin methods have been constructed by using both linear and quadratic B‐spline shape functions. Results shown by the method are found to be in good agreement with the exact solution. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

12.
In this article we develop a high‐order Godunov method for one‐dimensional convection‐diffusion‐reaction problems where convection dominates diffusion. The heart of this method comes from incorporating the diffusion term via the slope of the linear representation (recovery) of the solution on each grid cell. The method is conservative and explicit. Therefore, it is efficient in computing time. For constant coefficient linear convection, diffusion, and Lipschitz‐type reaction, the properties of the total variation stability and monotonicity preservation are proved. An error estimation is derived. Computational examples are presented and compared with the exact solutions. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 495–512, 2000  相似文献   

13.
The main idea of this paper is to utilize the adaptive iterative schemes based on regularization techniques for moderately ill‐posed problems that are obtained by a system of linear two‐dimensional Volterra integral equations with a singular matrix in the leading part. These problems may arise in the modeling of certain heat conduction processes as well as in the dynamic simulation packages such as compressible flow through a plant piping network. Owing to the ill‐posed nature of the first kind Volterra equation that appears in the system, we will focus on the two families of regularization algorithms, ie, the Landweber and Lavrentiev type methods, where we treat both the exact and perturbed data. Our aim is to work directly with the original Volterra equations without any kind of reduction. Two fast iterative algorithms with reasonable computational complexity are developed. Numerical experiments on a few test problems are used to illustrate the validity and efficiency of the proposed iterative methods in comparison with the classical regularization methods.  相似文献   

14.
In this article, Exp‐function method is used to obtain an exact solution of the equal‐width wave‐Burgers equation (EW‐Burgers). The method is straightforward and concise, and its applications are promising. It is shown that Exp‐function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving EW‐Burgers equation. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

15.
Recent empirical results indicate that many financial time series, including stock volatilities, often have long‐range dependencies. Comparing volatilities in stock returns is a crucial part of the risk management of stock investing. This paper proposes two test statistics for testing the equality of mean volatilities of stock returns using the analysis of variance (ANOVA) model with long memory errors. They are modified versions of the ordinary F statistic used in the ANOVA models with independently and identically distributed errors. One has a form of the ordinary F statistic multiplied by a correction factor, which reflects slowly decaying autocorrelations, that is, long‐range dependence. The other is a test statistic such that the degrees of freedom of the denominator in the ordinary F test statistic is calibrated by the so‐called effective sample size. Empirical sizes and powers of the proposed test statistics are examined via Monte Carlo simulation. An application to German stock returns is presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Purpose In this article, a novel computational method is introduced for solving the fractional nonlinear oscillator differential equations on the semi‐infinite domain. The purpose of the proposed method is to get better and more accurate results. Design/methodology/approach The proposed method is the combination of the sine‐cosine wavelets and Picard technique. The operational matrices of fractional‐order integration for sine‐cosine wavelets are derived and constructed. Picard technique is used to convert the fractional nonlinear oscillator equations into a sequence of discrete fractional linear differential equations. Operational matrices of sine‐cosine wavelets are utilized to transformed the obtained sequence of discrete equations into the systems of algebraic equations and the solutions of algebraic systems lead to the solution of fractional nonlinear oscillator equations. Findings The convergence and supporting analysis of the method are investigated. The operational matrices contains many zero entries, which lead to the high efficiency of the method, and reasonable accuracy is achieved even with less number of collocation points. Our results are in good agreement with exact solutions and more accurate as compared with homotopy perturbation method, variational iteration method, and Adomian decomposition method. Originality/value Many engineers can utilize the presented method for solving their nonlinear fractional models.  相似文献   

17.
Distribution‐free (nonparametric) control charts are helpful in applications where we do not have enough information about the underlying distribution. The Shewhart precedence charts is a class of Phase I nonparametric charts for location. One of these charts, called the median precedence chart (Med chart hereafter), uses the median of the test sample as the charting statistic, whereas another chart, called the minimum precedence chart (Min chart hereafter), uses the minimum. In this paper, we first study the comparative performance of the Min and the Med charts, respectively, in terms of their in‐control and out‐of‐control run‐length properties in an extensive simulation study. It is seen that neither chart is best as each has its strength in certain situations. Next, we consider enhancing their performance by adding some supplementary runs‐rules. It is seen that the new charts present very attractive run‐length properties, that is, they outperform their competitors in many situations. A summary and some concluding remarks are given. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The inverse scattering transform for the derivative nonlinear Schrödinger‐type equation is studied via the Riemann‐Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann‐Hilbert problem is established for the derivative nonlinear Schrödinger‐type equation. In the inverse scattering process, N‐soliton solutions of the derivative nonlinear Schrödinger‐type equation are obtained by solving Riemann‐Hilbert problems corresponding to the reflectionless cases. Moreover, the dynamics of the exact solutions are discussed.  相似文献   

19.
Application of exact Bahadur efficiencies in testing theory or exact inaccuracy rates in estimation theory needs evaluation of large deviation probabilities. Because of the complexity of the expressions, frequently a local limit of the nonlocal measure is considered. Local limits of large deviation probabilities of general quadratic statistics are obtained by relating them to large deviation probabilities of sums of k-dimensional random vectors. The results are applied, e.g., to generalized Cramér-von Mises statistics, including the Anderson-Darling statistic, Neyman's smooth tests, and likelihood ratio tests.  相似文献   

20.
We propose a new finite volume scheme for 2D anisotropic diffusion problems on general unstructured meshes. The main feature lies in the introduction of two auxiliary unknowns on each cell edge, and then the scheme has both cell‐centered primary unknowns and cell edge‐based auxiliary unknowns. The auxiliary unknowns are interpolated by the multipoint flux approximation technique, which reduces the scheme to a completely cell‐centered one. The derivation of the scheme satisfies the linearity‐preserving criterion that requires that a discretization scheme should be exact on linear solutions. The resulting new scheme is then called as a cell edge‐based linearity‐preserving scheme. The optimal convergence rates are numerically obtained on unstructured grids in case that the diffusion tensor is taken to be anisotropic and/or discontinuous. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号