首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein is described a new modular platform for the construction of cancer‐cell‐targeting drug conjugates. Tripodal boronate complexes featuring reversible covalent bonds were designed to accommodate a cytotoxic drug (bortezomib), poly(ethylene glycol) (Peg) chains, and folate targeting units. The B‐complex core was assembled in one step, proved stable under biocompatible conditions, namely, in human plasma (half‐life up to 60 h), and underwent disassembly in the presence of glutathione (GSH). Stimulus‐responsive intracellular cargo delivery was confirmed by confocal fluorescence microscopy, and a mechanism for GSH‐induced B‐complex hydrolysis was proposed on the basis of mass spectrometry and DFT calculations. This platform enabled the modular construction of multivalent conjugates with high selectivity for folate‐positive MDA‐MB‐231 cancer cells and IC50 values in the nanomolar range.  相似文献   

2.
An antibacterial platform based on multifunctional reduced graphene oxide (rGO) that is responsive to near‐infrared (NIR) light has been constructed. By introducing a luminescent Eu3+ complex and vancomycin for bacteria tracking into one system, this platform could specifically recognize and light up bacteria. Antibacterial activity of this nanoscale construction under NIR illumination was investigated. Upon illumination with NIR light, this nanoscale architecture generates great heat locally, resulting in the death of drug‐resistant bacteria. These results indicate that the ability of this nanoscale platform to kill drug‐resistant bacteria has great potential for clinical pathogenic bacteria diagnosis and treatment.  相似文献   

3.
Graphene oxide (GO)‐based materials offer great potential for biofunctionalization with applications ranging from biosensing to drug delivery. Such biofunctionalization utilizes specific functional groups, typically a carboxyl moiety, as anchoring points for biomolecule. However, due to the fact that the exact chemical structure of GO is still largely unknown and poorly defined (it was postulated to consist of various oxygen‐containing groups, such as epoxy, hydroxyl, carboxyl, carbonyl, and peroxy in varying ratios), it is challenging to fabricate highly biofunctionalized GO surfaces. The predominant anchoring sites (i.e., carboxyl groups) are mainly present as terminal groups on the edges of GO sheets and thus account for only a fraction of the oxygen‐containing groups on GO. Herein, we suggest a direct solution to the long‐standing problem of limited abundance of carboxyl groups on GO; GO was first reduced to graphene and consequently modified with only carboxyl groups grafted perpendicularly to its surface by a rational synthesis using free‐radical addition of isobutyronitrile with subsequent hydrolysis. Such grafted graphene oxide can contain a high amount of carboxyl groups for consequent biofunctionalization, at which the extent of grafting is limited only by the number of carbon atoms in the graphene plane; in contrast, the abundance of carboxyl groups on “classical” GO is limited by the amount of terminal carbon atoms. Such a graphene platform embedded with perpendicularly grafted carboxyl groups was characterized in detail by X‐ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy, and its application was exemplified with single‐nucleotide polymorphism detection. It was found that the removal of oxygen functionalities after the chemical reduction enhanced the electron‐transfer rate of the graphene. More importantly, the introduction of carboxyl groups promoted a more efficient immobilization of DNA probes on the electrode surface and improved the performance of graphene as a biosensor in comparison to GO. The proposed material can be used as a universal platform for biomolecule immobilization to facilitate rapid and sensitive detection of DNA or proteins for point‐of‐care investigations. Such reactive carboxyl groups grafted perpendicularly on GO holds promise for a highly efficient tailored biofunctionalization for applications in biosensing or drug delivery.  相似文献   

4.
Covalent functionalization has proven an effective solution for graphene to realize its revolutionary potential in real applications, whereas the platform strategy (a reactive graphene‐based material acting as the platform to undergo post‐reactions for generation of various graphene‐derived materials) is an attractive option to execute efficiently such a task. This contribution demonstrates that 2‐(3,4‐dihydroxyphenyl) pyrrolidine (DHPP) grafted graphene, G‐OH, is a competent platform. Four typical but not exclusive graphene‐derived materials have been prepared from G‐OH by using the chemical virtue of each DHPP unit having three categories totaling six reactive sites. The controlled feature of 1,3‐dipolar cycloaddition for the synthesis of G‐OH ensures that the electronic structure and properties of pristine graphene are succeeded largely by G‐OH and thus its derivatives. A promising alternative to graphene oxide, which has been widely used as a platform to prepare the graphene‐derived materials but suffers from some intrinsic disadvantages, is thus developed.  相似文献   

5.
Over the past years, the development of electrochemical sensing platforms for the sensitive detection of drug molecules have received great interests. In this research study, we introduced cauliflower‐like platinum particles decorated reduced graphene oxide modified glassy carbon electrode (Pt?RGO/GCE) as an electrochemical sensing platform for highly sensitive determination of acetaminophen (ACTM). The sensor was prepared via a simple and environmentally friendly two‐step electrodeposition method at room temperature. The combination of conductive RGO nanosheets and unique structured Pt particles (average 232 nm in diameter) provided an efficient interface with large effective surface area which greatly facilitated the electron transfer of ACTM. The experimental conditions that might affect the drug detection were studied in detail and optimized for best performance. The Pt?RGO/GCE was able to detect ACTM up to the limit of 2.2 nM with a linear concentration range from 0.01 to 350 μM. With its high reproducibility, excellent stability and selectivity, the as‐fabricated sensor was successfully applied to the ACTM content measurement in commercial tablets.  相似文献   

6.
The geometry, electronic structure, and catalytic properties of nitrogen‐ and phosphorus‐doped graphene (N‐/P‐graphene) are investigated by density functional theory calculations. The reaction between adsorbed O2 and CO molecules on N‐ and P‐graphene is comparably studied via Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms. The results indicate that a two‐step process can occur, namely, CO+O2→CO2+Oads and CO+Oads→CO2. The calculated energy barriers of the first step are 15.8 and 12.4 kcal mol?1 for N‐ and P‐graphene, respectively. The second step of the oxidation reaction on N‐graphene proceeds with an energy barrier of about 4 kcal mol?1. It is noteworthy that this reaction step was not observed on P‐graphene because of the strong binding of Oads species on the P atoms. Thus, it can be concluded that low‐cost N‐graphene can be used as a promising green catalyst for low‐temperature CO oxidation.  相似文献   

7.
《Electroanalysis》2017,29(4):1022-1030
The proposed chemically modified electrode was graphene oxide that was synthesized via Hummer's method followed by reduction of antimony film by in‐situ electrodeposition. The experimental process could be concluded in three main steps: preparation of antimony film, reduction of analyte ions on the electrode surface and stripping step under the conditions of square wave anodic stripping voltammetry (SWASV). A simple and rapid approach was developed for the determination of heavy metals simultaneously based on a sequential injection (SI), an automated flow‐based system, coupled with voltammetric method using antimony‐graphene oxide modified screen‐printed carbon electrode (SbF‐GO‐SPCE). The effects of main parameters involved with graphene oxide, antimony and measurement parameters were also investigated. Using SI‐SWASV under the optimal conditions, the proposed electrode platform has exhibited linear range from 0.1 to 1.5 M. Calculated limits of detection were 0.054, 0.026, 0.060, and 0.066 μM for Cd(II), Pb(II), Cu(II) and Hg(II), respectively. In addition, the optimized method has been successfully applied to determine heavy metals in real water samples with acceptable accuracy of 94.29 – 113.42 % recovery.  相似文献   

8.
Limited therapeutic efficiency and severe side effects in patients are two major issues existing in current chemotherapy of cancers in clinic. To design a proper theranostic platform seems thus quite needed to target cancer cells accurately by bioimaging and simultaneously release drugs on demand without premature leakage. A novel ZnO‐functionalized upconverting nanotheranostic platform has been fabricated for clear multi‐modality bioimaging (upconversion luminescence (UCL), computed tomography (CT), and magnetic resonance imaging (MRI)) and specific pH‐triggered on‐demand drug release. In our theranostic platform multi‐modality imaging provides much more detailed and exact information for cancer diagnosis than single‐modality imaging. In addition, ZnO can play the role of a “gatekeeper” to efficiently block the drug in the mesopores of the as‐prepared agents until it is dissolved in the acidic environment around tumors to realize sustained release of the drug. More importantly, the biodegradable ZnO, which is non‐toxic against normal tissues, endows the as‐prepared agents with high therapeutic effectiveness but very low side effects. These findings are of great interests and will inspire us much to develop novel effective imaging‐guided on‐demand chemotherapies in cancer treatment.  相似文献   

9.
In the cure of cancer, a major cause of today's mortality, chemotherapy is the most common treatment, though serious frequent challenges are encountered by current anticancer drugs. We discovered that few‐layer graphene (FLG) dispersions have a specific killer action on monocytes, showing neither toxic nor activation effects on other immune cells. We confirmed the therapeutic application of graphene on an aggressive type of cancer that is myelomonocytic leukemia, where the monocytes are in their malignant form. We demonstrated that graphene has the unique ability to target and boost specifically the necrosis of monocytic cancer cells. Moreover, the comparison between FLG and a common chemotherapeutic drug, etoposide, confirmed the higher specificity and toxicity of FLG. Since current chemotherapy treatments of leukemia still cause serious problems, these findings open the way to new and safer therapeutic approaches.  相似文献   

10.
A one‐pot/one‐step synthesis strategy was developed for the preparation of a nitrogen‐doped carbon nanoarchitecture with graphene‐nanosheet growth on the inner surface of carbon nanotubes (CNTs). The N‐graphene/CNT hybrids exhibit outstanding electrocatalytic activity for several important electrochemical reactions as a result of their unique morphology and defect structures, such as high but uniform nitrogen doping, graphene insertion into CNTs, considerable surface area, and the presence of iron nanoparticles. The high‐yield synthetic process features high efficiency, low‐cost, straightforward operation, and simple equipment.  相似文献   

11.
In this study, the neoplastic drug frequently used in the treatment of lung cancer, carboplatin is loaded to microbubbles via a microfluidic platform. In order to increase the drug loading capacity of microbubbles, carboplatin is encapsulated into alginate polymer layer. The phospholipid microbubbles (MBs) are synthesized by MicroSphere Creator, which is connected with T‐junction and micromixer for the treatment with CaCl2 solution to provide gelation of the alginate coated phospholipid microbubbles (AMBs). The carboplatin loaded alginate coated phospholipid microbubbles (CAMBs) result in 12.2 ± 0.21 µm mean size, obtained by mixing with 0.05% CaCl2 using T‐junction. The cytotoxic activities of the synthesized MBs, AMBs, and CAMBs are also investigated with the 3‐(4,5‐Dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2H‐tetrazolium bromide) (MTT) and live/dead fluorescent dying assays in the A549 and BEAS‐2B cell lines. The one‐step microfluidic coating of lipid microbubbles with natural alginate polymer appears to be a promising strategy for enhanced drug reservoir properties.  相似文献   

12.
A one‐pot/one‐step synthesis strategy was developed for the preparation of a nitrogen‐doped carbon nanoarchitecture with graphene‐nanosheet growth on the inner surface of carbon nanotubes (CNTs). The N‐graphene/CNT hybrids exhibit outstanding electrocatalytic activity for several important electrochemical reactions as a result of their unique morphology and defect structures, such as high but uniform nitrogen doping, graphene insertion into CNTs, considerable surface area, and the presence of iron nanoparticles. The high‐yield synthetic process features high efficiency, low‐cost, straightforward operation, and simple equipment.  相似文献   

13.
Bi‐ and trilayer graphene have attracted intensive interest due to their rich electronic and optical properties, which are dependent on interlayer rotations. However, the synthesis of high‐quality large‐size bi‐ and trilayer graphene single crystals still remains a challenge. Here, the synthesis of 100 μm pyramid‐like hexagonal bi‐ and trilayer graphene single‐crystal domains on Cu foils using chemical vapor deposition is reported. The as‐produced graphene domains show almost exclusively either 0° or 30° interlayer rotations. Raman spectroscopy, transmission electron microscopy, and Fourier‐transformed infrared spectroscopy were used to demonstrate that bilayer graphene domains with 0° interlayer stacking angles were Bernal stacked. Based on first‐principle calculations, it is proposed that rotations originate from the graphene nucleation at the Cu step, which explains the origin of the interlayer rotations and agrees well with the experimental observations.  相似文献   

14.
A new electrochemical immunosensing protocol for sensitive detection of alpha‐fetoprotein (AFP, as a model) in human serum was developed by means of immobilization of horseradish peroxidase‐anti‐AFP conjugates (HRP‐anti‐AFP) onto graphene and nanogold‐functionalized biomimetic interfaces. The low‐toxic and high‐conductive graphene complex provided a large capacity for nanoparticulate immobilization and a facile pathway for electron transfer. With a one‐step immunoassay format, the antigen‐antibody complex was formed between the immobilized HRP‐anti‐AFP on the electrode and AFP in the sample. The formed immunocomplex was coated on the electrode surface, inhibited partly the active center of HRP, and decreased the catalytic reduction of HRP toward the enzyme substrate of H2O2. Under optimal conditions, the decrease of reduction currents was proportional to AFP concentration, and the dynamic range was 1.0–10 ng/mL with a relative‐low detection limit (LOD) of 0.7 ng/mL AFP. Intra‐ and inter‐assay coefficients of variation (CVs) were less than 10 %. The assay was evaluated for clinical human serum samples, including 8 (possible) patients with hepatocarcinoma and 3 normal human sera. Correct identification of negative/positive samples and perfect accordance with results from Elecsys 2010 Electrochemiluminescent Automatic Analyzer as a reference was obtained. Importantly, the graphene and nanogold‐based sensor provided a promising platform for the detection of other biocompounds, and could be further applied for development of other potential electrochemical bio/chemosensors.  相似文献   

15.
A new member of the family of graphene derivatives, namely, graphene acid with a composition close to C1(COOH)1, was prepared by oxidation of graphene oxide. The synthetic procedure is based on repeated oxidation of graphite with potassium permanganate in an acidic environment. The oxidation process was studied in detail after each step. The multiple oxidations led to oxidative removal of other oxygen functional groups formed in the first oxidation step. Detailed chemical analysis showed only a minor amount of other oxygen‐containing functional groups such as hydroxyl and the dominant presence of carboxyl groups in a concentration of about 30 wt %. Further oxidation led to complete decomposition of graphene acid. The obtained material exhibits unique sorption capacity towards metal ions and carbon dioxide. The highly hydrophilic nature of graphene acid allowed the assembly of ultrathin free‐standing membranes with high transparency.  相似文献   

16.
Doped graphene materials are of huge importance because doping with electron‐donating or electron‐withdrawing groups can significantly change the electronic structure and impact the electronic and electrochemical properties of these materials. It is highly important to be able to produce these materials in large quantities for practical applications. The only method capable of large‐scale production is the oxidative treatment of graphite to graphene oxide, followed by its consequent reduction. We describe a scalable method for a one‐step doping of graphene with phosphorus, with a simultaneous reduction of graphene oxide. Such a method is able to introduce significant amount of dopant (3.65 at. %). Phosphorus‐doped graphene is characterized in detail and shows important electronic and electrochemical properties. The electrical conductivity of phosphorus‐doped graphene is much higher than that of undoped graphene, owing to a large concentration of free carriers. Such a graphene material is expected to find useful applications in electronic, energy storage, and sensing devices.  相似文献   

17.
Developing graphene‐like two‐dimensional materials naturally possessing a band gap has sparked enormous interest. Thanks to the inherent wide band gap and high mobility in the 2D plane, covalent organic frameworks containing triazine rings (t‐COFs) hold great promise in this regard, whilst the synthesis of single‐layer t‐COFs remains highly challenging. Herein, we present the fabrication of a well‐defined graphene‐like t‐COF on Au(111). Instead of single/multiple‐step single‐type reactions commonly applied for on‐surface synthesis, distinct stepwise on‐surface reactions, including alkynyl cyclotrimerization, C?O bond cleavage, and C?H bond activation, are triggered on demand, leading to product evolution in a controlled step‐by‐step manner. Aside from the precise control in sophisticated on‐surface synthesis, this work proposes a single‐atomic‐layer organic semiconductor with a wide band gap of 3.41 eV.  相似文献   

18.
Although graphene nanomesh is an attractive 2D carbon material, general synthetic routes to produce functional graphene nanomesh in large‐scale are complex and tedious. Herein, we elaborately design a simple two‐step dimensional reduction strategy for exploring nitrogen‐doped graphene nanomesh by thermal exfoliation of crystal‐ and shape‐modified metal‐organic frameworks (MOFs). MOF nanoleaves with 2D rather than 3D crystal structure are used as the precursor, which are further thermally unraveled into nitrogen‐doped graphene nanomesh by using metal chlorides as the exfoliators and etching agent. The nitrogen‐doped graphene nanomesh has a unique ultrathin two‐dimensional morphology, high porosity, rich and accessible nitrogen‐doped active sites, and defective graphene edges, contributing to an unprecedented catalytic activity for the oxygen reduction reaction (ORR) in acid electrolytes. This approach is suitable for scalable production.  相似文献   

19.
A dispersive micro‐solid‐phase extraction procedure coupled with capillary electrophoresis ultraviolet detection was developed for determination of verapamil in plasma samples. Graphene oxide/polydopamin was synthesized by a one‐step polymerization method, and graphene oxide/Fe3O4 (magnetic graphene oxide) nanocomposite was prepared by coprecipitation method. Moreover, they were fully characterized. The use of hazardous and water‐immiscible solvents was scaled down, and only 500 μL of acetone was required as the desorption solvent. The detector response concentration plots were linear in the range of 5–500 ng/mL, and the proposed method was validated according to guidelines. The precision and accuracy were less than 15%. Dispersive micro‐solid‐phase extraction method provides a rapid, environmentally friendly, and sensitive analysis for the verapamil in patient plasma samples, which is adequate for therapeutic drug monitoring and pharmacokinetic studies.  相似文献   

20.
Polytherapy (or drug combination cancer therapy (DCCT)), targeting multiple mechanisms associated with tumor proliferation, can efficiently maximize therapeutic efficacy, decrease drug dosage, and reduce drug resistance. However, most DCCT strategies cannot coordinate the specific delivery of a drug combination in an accurately tuned ratio into cancer cells. To address these limitations, the present work reports the engineering of circular bivalent aptamer–drug conjugates (cb‐ApDCs). The cb‐ApDCs exhibit high stability, specific recognition, excellent cellular uptake, and esterase‐triggered release. Furthermore, the drug ratios in cb‐ApDCs can be tuned for an enhanced synergistic effect without the need for complex chemistry. Therefore, cb‐ApDCs provide a promising platform for the development of DCCT strategies for different drug combinations and ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号