首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liquid metals have been widely used as substrates to grow graphene and other 2D materials. On a homogeneous and isotropic liquid surface, a polycrystalline 2D material is formed by coalescence of many randomly nucleated single‐crystal islands, and as a result, the domains in a polycrystal are expected to be randomly aligned. Here, we report the unexpected finding that only 30°‐twinned graphene polycrystals are grown on a liquid Cu surface. Atomic simulations confirm that the unique domain alignment in graphene polycrystals is due to the free rotation of graphene islands on the liquid Cu surface and the highly stable 30°‐grain boundaries in graphene. In‐depth analysis predicts 30 types of possible 30°‐twinned graphene polycrystals and 27 of them are observed. The revealed formation mechanism of graphene polycrystals on a liquid Cu surface deepens our fundamental understanding on polycrystal growth and could serve as a guideline for the controlled synthesis of 2D materials.  相似文献   

2.
We report an approach for the synthesis of mono‐ or bilayer graphene films by atmospheric‐pressure chemical vapor deposition that can achieve a low defect density through control over the growth time. Different heating ramp rates were found to lead to variation in the smoothness and grain size of the Cu foil substrate, which directly influenced the density of the graphene domains. The rough Cu surface induced by rapid heating creates a high density of graphene domains in the initial stage, ultimately resulting in a graphene film with a high defect density due to an increased overlap between domains. Conversely, a slow heating rate resulted in a smooth and flat Cu surface, thereby lowering the density of the initial graphene domains and ensuring a uniform monolayer film. From this, we demonstrate that the growth mechanism of graphene on existing graphene films is dependent on the density of the initial graphene domains, which is affected by the heating ramp rate.  相似文献   

3.
Characterizing and controlling the interlayer orientations and stacking orders of two‐dimensional (2D) bilayer crystals and van der Waals (vdW) heterostructures is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) crystals that result from different layer stackings provide an ideal platform to study the stacking configurations in 2D bilayer crystals. Through a controllable vapor‐phase deposition method, bilayer GaSe crystals were selectively grown and their two preferred 0° or 60° interlayer rotations were investigated. The commensurate stacking configurations (AA′ and AB stacking) in as‐grown bilayer GaSe crystals are clearly observed at the atomic scale, and the Ga‐terminated edge structure was identified using scanning transmission electron microscopy. Theoretical analysis reveals that the energies of the interlayer coupling are responsible for the preferred orientations among the bilayer GaSe crystals.  相似文献   

4.
The growth of carbon layers, defective graphene, and graphene by deposition of polycyclic aromatic hydrocarbons (PAHs) on Cu(111) is studied by scanning tunneling microscopy and X-ray photoelectron spectroscopy. Two different PAHs are used as starting materials: the buckybowl pentaindenocorannulene (PIC) which contains pentagonal rings and planar coronene (CR). For both precursors, with increasing sample temperature during deposition, porous carbon aggregates (350 °C), dense carbon layers (400–450 °C), disordered defective graphene (500 °C–550 °C), and extended graphene (≥600 °C) are obtained. No significant differences for defective graphene grown from PIC and CR are observed. C 1s X-ray photoelectron spectra of PIC and CR derived samples grown at 350–550 °C exhibit a characteristic C−Cu low binding energy component. Preparation at ≥600 °C eliminates this C−Cu species and only C−C bonded carbon remains.  相似文献   

5.
Homoleptic benzyl derivatives of titanium and zirconium have been grafted onto silica that was dehydroxylated at 200 and 700 °C, thereby affording bi‐grafted and mono‐grafted single‐site species, respectively, as shown by a combination of experimental techniques (IR, MAS NMR, EXAFS, and elemental analysis) and theoretical calculations. Marked differences between these compounds and their neopentyl analogues are discussed and rationalized by using DFT. These differences were assigned to the selectivity of the grafting process, which, depending on the structure of the molecular precursors, led to different outcomes in terms of the mono‐ versus bi‐grafted species for the same surface concentration of silanol species. The benzylzirconium derivatives were active towards ethylene polymerization in the absence of an activator and the bi‐grafted species displayed higher activity than their mono‐grafted analogues. In contrast, the benzyltitanium and neopentylzirconium counterparts were not active under similar reaction conditions.  相似文献   

6.
We report the synthesis and characterization of well‐defined homo‐ and diblock copolymers containing poly(furfuryl glycidyl ether) (PFGE) via living anionic ring‐opening polymerization using different initiators. The obtained materials were characterized by SEC, MALDI‐TOF MS, and 1H NMR spectroscopy and molar masses of up to 9400 g/mol were obtained for PFGE homopolymers. If the amphiphilic diblock copolymer PEG‐block‐PFGE was dissolved in water, micelles with a PFGE core and a PEG corona were formed. Hereby, the hydrophobic PFGE core domains were used for the incorporation of a suitable bismaleimide and heating to 60 °C induced the crosslinking of the micellar core via Diels‐Alder chemistry. This process was further shown to be reversible. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
A series of N‐alkyl/aryl carbazole 3,6‐substituted arylene trifluorovinyl ether (TFVE) monomers were synthesized in high purity and yield from a concise four‐step synthesis using carbazole as a starting material. Condensate‐free, step‐growth chain extension of the monomers afforded perfluorocyclobutyl (PFCB) arylene ether homo‐ and copolymers as solution processable, optically transparent blue‐light emissive materials. Arylene TFVE monomers and conversion to PFCB arylene ether polymers were structurally elucidated and purity confirmed by high resolution mass spectroscopy, NMR (1H, 13C, and 19F) spectroscopy, gel permeation chromatography, and attenuated total reflectance Fourier transform infrared analysis. Thermal analysis by differential scanning calorimetry and thermogravimetric analysis revealed glass transition temperatures >150 °C and onset of decomposition in nitrogen >410 °C with 40 wt % char yield up to 900 °C. Optical and electrochemical studies included solution (tetrahydrofuran) and solid state (spin cast thin film) UV–vis/fluorescence spectroscopy and cyclic voltammetry which showed structure dependence of these blue emissive systems on the nature of the N‐alkyl/aryl carbazole substitution in either homo‐ or copolymer configurations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 552–560  相似文献   

8.
Thermosensitive graphene‐polymer composites have been prepared by attaching poly(N‐isopropylacrylamide) (PNIPAAm) onto the basal plane of graphene sheets via π‐π stacking. Pyrene‐terminated PNIPAAm was synthesized using reversible addition fragmentation chain transfer (RAFT) polymerization via a pyrene‐functional RAFT agent. Aqueous solutions of the graphene‐polymer composites were stable and thermosensitive. The lower critical solution temperature (LCST) of pyrene‐terminated PNIPAAm was measured to be 33 °C. When the pyrene‐functional polymer was attached to graphene the resultant composites were also thermosensitive in aqueous solutions exhibiting a reversible suspension behavior at 24 °C. Atomic force microscopy (AFM) analysis revealed that the thickness of a graphene‐PNIPAAm (Mn: 10,000 and PDI: 1.1) sheet was ~5.0 nm. The surface coverage of polymer chains on the graphene basal plane was calculated to be 7.2 × 10?11 mol cm?2. The graphene‐PNIPAAm composite material was successfully characterized using X‐ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR‐IR) spectroscopy, and thermogravimetric analysis (TGA). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 425–433, 2010  相似文献   

9.
Excitation‐dependent photoluminescence (PL) is a well‐known property of graphene quantum dots (GQDs). For the development of carbon‐based photofunctional materials, GQDs possessing uniform PL properties are in high demand. A protocol has been established to separate spectroscopically uniform lipophilic GQD‐ 1 a from a mixture of GQD‐ 1 mainly composed of GQD‐ 1 a and GQD‐ 1 b . The mixture of GQD‐ 1 was synthesized through the reaction of p‐methoxybenzylamine with GQD‐ 2 prepared from graphite by common oxidative exfoliation. Size‐exclusion chromatography gave rise to GQD‐ 1 a and GQD‐ 1 b , with diameters of 19.8 and 4.9 nm, respectively. Large GQD‐ 1 a showed that the PL was fairly independent of the excitation wavelengths, whereas the PL of small GQD‐ 1 b was dependent on excitation. The excitation‐dependent nature is most likely to be associated with the structures of sp2 domains on the graphene surfaces. The large sp2‐conjugated surface of GQD‐ 1 a is likely to possess well‐developed and large sp2 domains, the band gaps of which do not significantly vary. The small sp2‐conjugated surface of GQD‐ 1 b produces small sp2‐conjugated domains that generate band gaps differing with domain sizes.  相似文献   

10.
The ability to dope graphene is highly important for modulating electrical properties of graphene. However, the current route for the synthesis of N-doped graphene by chemical vapor deposition (CVD) method mainly involves high growth temperature using ammonia gas or solid reagent melamine as nitrogen sources, leading to graphene with low doping level, polycrystalline nature, high defect density and low carrier mobility. Here, we demonstrate a self-assembly approach that allows the synthesis of single-layer, single crystal and highly nitrogen-doped graphene domain arrays by self-organization of pyridine molecules on Cu surface at temperature as low as 300 °C. These N-doped graphene domains have a dominated geometric structure of tetragonal-shape, reflecting the single crystal nature confirmed by electron-diffraction measurements. The electrical measurements of these graphene domains showed their high carrier mobility, high doping level, and reliable N-doped behavior in both air and vacuum.  相似文献   

11.
The effects of the dynamic polymerization method and temperature on the molecular aggregation structure and the mechanical and melting properties of thermoplastic polyurethanes (TPUs) were successfully clarified. TPUs were prepared from poly (ethylene adipate) glycol (Mn = 2074), 4,4′‐diphenylmethane diisocyanate and 1,4‐butanediol by the one‐shot (OS) and the prepolymer (PP) methods in bulk at dynamic polymerization temperatures ranging from 140 to 230 °C. Glass‐transition temperatures (Tgs) of the soft segment and melting points (Tms) of the hard segment domains of OS‐TPUs increased and decreased, respectively, with increasing polymerization temperatures, but those of PP‐TPUs were almost independent of the polymerization temperature. Tgs of the soft segment and Tms of the hard segment domains of these TPUs polymerized above 190 °C were almost the same regardless of the polymerization method. Solid‐state nuclear magnetic resonance spectroscopy (NMR) analyses of OS‐ and PP‐TPUs showed that the relative proton content of fast decay components, which corresponds to the hard segment domains, in these TPUs decreased with increasing polymerization temperatures. These results clearly show that the degree of microphase separation becomes weaker with increasing polymerization temperatures. The temperature dependence of dynamic storage modulus and loss tangent of OS‐TPUs coincided with those of PP‐TPUs at polymerization temperature above 190 °C. The apparent shear viscosity for OS‐ and PP‐TPUs polymerized above 190 °C approached a Newtonian behavior at low shear rates regardless of the polymerization method. These results indicate that TPUs polymerized at higher temperatures form almost the same molecular aggregation structures irrespective of the dynamic polymerization method. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 800–814, 2007  相似文献   

12.
In this study, different types of graphene were synthesized to investigate hydrogen adsorption capacity at different pressures (0–34 bar) at room temperature (298 K). Graphene and nanoporous graphene were prepared by Chemical Vapor Deposition (CVD) method, using methane as a carbon source at a temperature of 900 °C over copper plates and nickel oxide nanocatalyst. The nickel oxide nanocatalyst was prepared by sol–gel method, whereas graphene oxide was prepared through modified Hummer's method. The products were characterized by X‐ray diffraction, field emission‐scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller and Raman spectroscopy. The adsorption of hydrogen was done by volumetric method. High adsorption capacity was achieved in nanoporous graphene because of its high pore volume (2.11 cm3/g) and large specific surface area (850 m2/g). Hydrogen adsorption values for nanoporous graphene, graphene and graphene oxide were determined as 2.56, 1.70 and 0.74 wt%, respectively. In addition, the hydrogen adsorption of graphene nanostructures fitted nicely to the selected two‐parameter and three‐parameter adsorption isotherm models. The adsorption isotherm model coefficients have been found for a 0–34 bar pressure range. The parameter values for all adsorbents showed proper conformity to the model and experimental data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The Cu‐catalyzed intramolecular CH insertion of phenyliodonium ylide 1b was investigated at 0° in the presence of several chiral ligands. Enantioselectivities varied in the range 38–72%, and were higher than those resulting from reaction of the diazo compound 1c at 65°. The intramolecular insertion of the enantiomerically pure methyl diazoacetate (R)‐ 20 and of the corresponding phenyliodonium ylide (R)‐ 21 proceeded to (R)‐ 23 with retention of configuration with [Cu(hfa)2] (hfa=hexafluoroacetylacetone=1,1,1,5,5,5‐hexafluoropentane‐2,4‐dione) and [Rh2(OAc)4]. These results are consistent with a carbenoid mechanism for the Cu‐catalyzed insertion with phenyliodonium ylides. However, the insertion of the perfluorosulfonated phenyliodonium ylide (R)‐ 29 afforded with [Cu(hfa)2] as well as with [Rh2(OAc)4] the cyclopentanone derivative 30 as a cis/trans mixture with only 56–67% enantiomeric excess.  相似文献   

14.
Preparation and characterization of poly(N‐isopropylacrylamide) (PNIPAM) polymer brushes on the surfaces of reduced graphene oxide (RGO) sheets based on click chemistry and reversible addition‐fragmentation chain transfer (RAFT) polymerization was reported. RGO sheets prepared by thermal reduction were modified by diazonium salt of propargyl p‐aminobenzoate, and alkyne‐functionalized RGO sheets were obtained. RAFT chain transfer agent (CTA) was grafted to the surfaces of RGO sheets by click reaction. PNIPAM on RGO sheets was prepared by RAFT polymerization. Fourier transform‐infrared spectroscopy, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and transmission electron microscopy (TEM) results all demonstrated that RAFT CTA and PNIPAM were successfully produced on the surfaces of RGO sheets. Nanosized PNIPAM domains on RGO sheets were observed on TEM. Micro‐DSC result indicated that in aqueous solution PNIPAM on RGO sheets presented a lower critical solution temperature at 33.2 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
In this paper, the synthesis, crystal culturing and single-crystal X-ray crystallography of 1,3-di(2-p-tolylvingl)-2,4,6-trinitrobenzene (DTTB) were reported. FT-IR, ^1H NMR and mass spectroscopy techniques were employed to characterize this compound. The results show that this single crystal belongs to triclinic system with space group P-1. Density functional theory (DFT) B3LYP was employed to optimize structure and calculate frequencies of the title compound. The calculated geometrical parameters were close to the corresponding experiment ones. The thermal decomposition of DTTB was investigated by DSC and TG-DTG methods at the heating rate of 10 ℃/min. It was observed that the initial decomposing temperature of DTTB was higher than that of TNTM, although its melting point was lower than that of TNTM, indicating that DTTB has higher heat resistant ability.  相似文献   

16.
Cu(I)Br/Me6‐TREN species are unstable and disproportionate into metallic Cu(0) and Cu(II)Br2/Me6‐TREN in DMSO, whereas in toluene are stable and do not undergo disproportionation, at least at 25 °C. To estimate the role of the disproportionating solvent in single electron‐transfer living radical polymerization (SET‐LRP) a comparative analysis of Cu(0)/Me6‐TREN‐catalyzed polymerization of MA initiated with methyl 2‐bromopropionate at 25 °C was performed in DMSO and toluene. A combination of kinetic experiments and chain end analysis by 500‐MHz 1H NMR spectroscopy was used to demonstrate that disproportionation represents the crucial requirement for a successful SET‐LRP of MA at 25 °C. In DMSO a perfect SET‐LRP occurs and yields close to 100% conversion in 45 min. A first order polymerization in growing species up to 100% conversion and a PMA with perfectly functional chain ends are obtained. However, in toluene within 17 h only about 60% conversion is obtained, the polymerization does not show first order in growing species and therefore is not a living polymerization. Moreover, at 60% conversion the resulting PMA has only 80% active chain ends. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6880–6895, 2008  相似文献   

17.
18.
Alcohols are known to promote the disproportionation of Cu(I)X species into nascent Cu(0) and Cu(II)X. Therefore, alcohols are expected to be excellent solvents that facilitate the single‐electron transfer mediated living radical polymerization (SET‐LRP) mediated by nascent Cu(0) species. This publication demonstrates the ultrafast SET‐LRP of methyl acrylate initiated with bis(2‐bromopropionyloxy)ethane and catalyzed by Cu(0)/Me6‐TREN in methanol, ethanol, 1‐propanol, and tert‐butanol and in their mixture with water at 25 °C. The structural analysis of the resulting polymers by a combination of 1H NMR and MALDI‐TOF MS demonstrates the synthesis of perfectly bifunctional α,ω‐dibromo poly(methyl acrylate)s by SET‐LRP in alcohols. Moreover, this work provides an expansion of the list of solvents available for SET‐LRP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2745–2754, 2008  相似文献   

19.
Well distributed Pd‐Cu bimetallic alloy nanoparticles supported on amine‐terminated ionic liquid functional three‐dimensional graphene (3D IL‐rGO/Pd‐Cu) as an efficient catalyst for Suzuki cross‐coupling reaction has been prepared via a facile synthetic method. The introduction of IL‐NH2 cations on the surface of graphene sheets can effectively avoid the re‐deposition of graphene sheets, allowing the catalyst to be reused up to 10 cycles. The addition of Cu not only saves cost but also ensures high catalytic efficiency. It is worthy to note that the catalyst 3D IL‐rGO/Pd2.5Cu2.5 can efficiently catalyze the Suzuki cross‐coupling reaction with the yield up to 100% in 0.25 h, almost one‐fold higher than that by the pristine IL‐rGO/Pd2.5 catalyst (52%). The Powder X‐Ray Diffraction (XRD), combining energy dispersive X‐ray spectroscopy (EDS) mapping results confirm the existence and distribution of Pd and Cu in the bimetallic nanoparticles. The transmission electron microscopy (TEM) reveals the nanoparticle size with an average diameter of 3.0 ± 0.5 nm. X‐ray photoelectron spectroscopy (XPS) analysis proved the presence of electron transfer from Cu to Pd upon alloying. Such alloying‐induced electronic modification of Pd‐Cu alloy and 3D ionic liquid functional graphene with large specific surface area both accounted for the catalytic enhancement.  相似文献   

20.
Nowadays, pharmaceutical antibiotics are known as a serious class of pollutants. Therefore, it is important to develop effective methods for removing these pollutants from aqueous media. Different methods were applied for this purpose, and among these methods, chemical reduction by a cheap and eco‐friendly nanocatalyst is the most efficient and simplest method. In this research, based on graphene oxide supported by zero‐valent iron in mono‐, bi‐, and tri‐metallic systems, various nanocomposites were synthesized and used to degrade tetracycline as a model antibiotic from aqueous media. An investigation was carried out on the synergic effect among graphene oxide and the nano zero‐valent iron‐based tri‐metallic system as well as removal efficiencies. It was found that higher degradation efficiency is yielded by graphene oxide supported by Fe/Cu/Ag tri‐metallic system. The maximum synergic effect occurs at an acidic medium. The Brunauer–Emmett–Teller, Fourier transform spectroscopy, scanning electron microscopy‐energy dispersive X‐ray analysis, transmission electron microscopy, and X‐ray diffraction analysis were used to characterize the synthesized nanocomposites, which has successfully proved the loading of nanoscale Fe/Cu/Ag tri‐metallic on a graphene oxide support. The central composite design was used to model and optimize all involved variables affecting antibiotic removal efficiency. The consequences illustrated the optimum condition regarding the removal of 50 ppm of tetracycline, for the nanocomposites dose of 3.0 mg ml?1, the contact time of 30 min, and pH of 2, was achieved using the simplex non‐linear optimization method. Moreover, antibiotic adsorption kinetic models were also investigated. Finally, the tetracycline removal from aqueous media at different concentrations, 25, 50, and 75 ppm, was successful by applying the proposed nanocomposite, and the results showed tetracycline removal efficiencies of above 70%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号