首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The optimization of three-dimensional (3D) MXene-based electrodes with desired electrochemical performances is highly demanded. Here, a precursor-guided strategy is reported for fabricating the 3D SnS/MXene architecture with tiny SnS nanocrystals (≈5 nm in size) covalently decorated on the wrinkled Ti3C2Tx nanosheets through Ti−S bonds (denoted as SnS/Ti3C2Tx-O). The formation of Ti−S bonds between SnS and Ti3C2Tx was confirmed by extended X-ray absorption fine structure (EXAFS). Rather than bulky SnS plates decorated on Ti3C2Tx (SnS/Ti3C2Tx-H) by one-step hydrothermal sulfidation followed by post annealing, this SnS/Ti3C2Tx-O presents size-dependent structural and dynamic properties. The as-formed 3D hierarchical structure can provide short ion-diffusion pathways and electron transport distances because of the more accessible surface sites. In addition, benefiting from the tiny SnS nanocrystals that can effectively improve Na+ diffusion and suppress structural variation upon charge/discharge processes, the as-obtained SnS/Ti3C2Tx-O can generate pseudocapacitance-dominated storage behavior enabled by engineered surface reactions. As predicted, this electrode exhibits an enhanced Na storage capacity of 565 mAh g−1 at 0.1 A g−1 after 75 cycles, outperforming SnS/Ti3C2Tx-H (336 mAh g−1), SnS (212 mAh g−1), and Ti3C2Tx (104 mAh g−1) electrodes.  相似文献   

2.
《中国化学快报》2020,31(9):2305-2308
MXene materials have recently attracted considerable attention in energy storage application owing to their metallic conductivity, 2D structure and tunable surface terminations. However, the restacking of 2D MXene nanosheets hinders the ion transport and accessibility to the surface, resulting in adverse effect on their electrochemical performances. Here, with the assistance of hexamethylenetetramine (C6H12N4), 2D Ti3C2Tx MXene nanosheets were fabricated into a 3D architecture with crumbled and porous structure through an electrostatic self-assembly followed by annealing. The resultant 3D structure can expose massive active sites and facilitates the ion transport, which is beneficial for sufficient utilization of the outstanding superiorities of the MXene. Therefore, as a pseudocapacitive material, the 3D crumpled and porous Ti3C2Tx MXene shows a gravimetric capacitance of 333 F/g at 1 A/g, and maintains 261 F/g and 132 F/g at ultrahigh current densities of 100 A/g and 1000 A/g, respectively, revealing promising potential for application in supercapacitors.  相似文献   

3.
MXenes are a class of two‐dimensional (2D) transition metal carbides, nitrides and carbonitrides that have shown promise for high‐rate pseudocapacitive energy storage. However, the effects that irreversible oxidation have on the surface chemistry and electrochemical properties of MXenes are still not understood. Here we report on a controlled anodic oxidation method which improves the rate performance of titanium carbide MXene (Ti3C2Tx, Tx refers to ‐F, =O, ‐Cl and ‐OH) electrodes in acidic electrolytes. The capacitance retention at 2000 mV s?1 (with respect to the lowest scan rate of 5 mV s?1) increases gradually from 38 % to 66 % by tuning the degree of anodic oxidation. At the same time, a loss in the redox behavior of Ti3C2Tx is evident at high anodic potentials after oxidation. Several analysis methods are employed to reveal changes in the structure and surface chemistry while simultaneously introducing defects, without compromising electrochemically active sites, are key factors for improving the rate performance of Ti3C2Tx. This study demonstrates improvement of the electrochemical performance of MXene electrodes by performing a controlled anodic oxidation.  相似文献   

4.
《中国化学快报》2023,34(4):107426
In this work, Ti3C2Tx MXene with -F, -Cl and -Br surface terminations are synthesized and the effect of these halogen terminations on the lithium storage properties is investigated. A maximum Li+ storage capacity of 189 mAh/g is achieved with Ti3C2Brx MXene much higher than Ti3C2Clx and Ti3C2Fx with 138 mAh/g and 123 mAh/g, respectively. Density functional theory (DFT) calculation shows that the adsorption formation energy of halogen atoms on Ti atoms follows the trend of Ti-F > Ti-Cl > Ti-Br, leading to the same trend in the content of terminations on corresponding MXenes. In addition, inevitable exposure of MXene to oxygen causes competition between halogen and oxygen. Theoretical results show Ti3C2Brx MXene has the highest Ti to O ratio and the lowest Ti to Br ratio, the high lithium affinity of O explains the maximum Li-ion storage capacity with Ti3C2Brx MXene. This work shed light on the opportunity for achieving improved lithium storage properties of MXene electrodes by regulating the surface chemistry.  相似文献   

5.
Titanium carbide (Ti3C2Tx) MXene possesses various unique physicochemical and catalytic properties. However, the electrochemical CO oxidation performance is not yet addressed experimentally. Herein, Ti3C2Tx (TX=OH, O, and F) ordered and exfoliated two-dimensional nanosheets ornamented with semi-spherical palladium nanoparticles (2.5 Wt. %) with an average diameter of (10±1 nm) (denoted as Pd/Ti3C2Tx) is rationally designed for the electrochemical CO oxidation. The fabrication process is based on the selective chemical etching of Ti3AlC2 and delamination under sonication to form Ti3C2Tx nanosheets that are used as a substrate and reducing agent for supporting in situ growth of Pd nanoparticles via impregnation with Pd salt. Interestingly, Pd-free Ti3C2Tx displayed inferior CO oxidation activity, while Pd/Ti3C2Tx enhanced the CO oxidation activity substantially. This is attributed to the combination of outstanding physicochemical properties of Ti3C2Tx and the catalytic merits of Pd nanoparticles.  相似文献   

6.
2D titanium carbide (Ti3C2Tx MXene) showed good capacitance in both organic and neat ionic liquid electrolytes, but its charge storage mechanism is still not fully understood. Here, electrochemical characteristics of Ti3C2Tx electrode were studied in neat EMI-TFSI electrolyte. A capacitive behavior was observed within a large electrochemical potential range (from − 1.5 to 1.5 V vs. Ag). Intercalation and de-intercalation of EMI+ cations and/or TFSI anions were investigated by in-situ X-ray diffraction. Interlayer spacing of Ti3C2Tx flakes decreases during positive polarization, which can be ascribed to either electrostatic attraction effect between intercalated TFSI anions and positively charged Ti3C2Tx nanosheets or steric effect caused by de-intercalation of EMI+ cations. The expansion of interlayer spacing when polarized to negative potentials is explained by steric effect of cation intercalation.  相似文献   

7.
采用水热法制备了0D/2D复合Ti3C2Tx MXene,利用X射线衍射、动态光散射和荧光光谱表征了其结构与形貌,结果表明形成了量子点吸附于纳米片的Ti3C2Tx复合结构(QDT)。相比未引入量子点的Ti3C2Tx,由QDT组装得到的自支撑膜电极的电化学性能有了显著提高:在三电极体系中,扫速为5 mV·s-1时,比电容为338 F·g-1,当扫速达到2 000 mV·s-1,电容保持率达到46%;在两电极体系中,0.5 A·g-1时的比电容达到216 F·g-1,10 000次循环后电容保持率为87%。以上性能可归结于:量子点提供了更多的离子吸附位点,且纳米片尺寸减小,缩短了离子传输路径。  相似文献   

8.
MXenes, 2D compounds generated from layered bulk materials, have attracted significant attention in energy‐related fields. However, most syntheses involve HF, which is highly corrosive and harmful to lithium‐ion battery and supercapacitor performance. Here an alkali‐assisted hydrothermal method is used to prepare a MXene Ti3C2Tx (T=OH, O). This route is inspired from a Bayer process used in bauxite refining. The process is free of fluorine and yields multilayer Ti3C2Tx with ca. 92 wt % in purity (using 27.5 m NaOH, 270 °C). Without the F terminations, the resulting Ti3C2Tx film electrode (ca. 52 μm in thickness, ca. 1.63 g cm?3 in density) is 314 F g?1 via gravimetric capacitance at 2 mV s?1 in 1 m H2SO4. This surpasses (by ca. 214 %) that of the multilayer Ti3C2Tx prepared via HF treatments. This fluorine‐free method also provides an alkali‐etching strategy for exploring new MXenes for which the interlayer amphoteric/acidic atoms from the pristine MAX phase must be removed.  相似文献   

9.
《中国化学快报》2021,32(9):2899-2903
Zinc metal has aroused increasing interest as anode material of Zn-based batteries for their energy storage application. However, the uneven Zn stripping/plating processes induce severe dendrite growth, leading to low Coulombic efficiency and safety hazards. Herein, a surface-tuned two-dimensional (2D) MXene Ti3C2Tx scaffold as a robust skeleton is developed to facilitate the uniform Zn stripping/plating. The Ti3C2Tx with high electrical conductivity and unique structure provides fast ionic-transport paths, promising even Zn2+ stripping/plating processes. With suppressed Zn dendrite growth and uniform nucleation, the proposed 2D Ti3C2Tx scaffold for Zn metal anode delivers a low voltage hysteresis of 63 mV and long lifespan over 280 h. This surface-tuned engineering strategy demonstrates the potential application of Zn anode with MXene skeleton for next-generation Zn-based batteries.  相似文献   

10.
Nowadays, two‐dimensional materials have many applications in materials science. As a novel two‐dimensional layered material, MXene possesses distinct structural, electronic, and chemical properties; thus, it has potential applications in many fields, including battery electrodes, energy storage materials, sensors, and catalysts. Up to now, more than 70 MAX phases have been reported. However, in contrast to the variety of MAX phases, the existing MXene family merely includes Ti2C, Ti3C2, (Ti1/2, Nb1/2)2C, (V1/2, Cr1/2)3C2, Nb2C, Ti3CN, Ta4C3, V2C, and Nb4C3. Among these materials, the Ti3C2Tx MXene exhibits prominently high volumetric capacitance, and the rate at which it transports electron is suitable for electrode materials in batteries and supercapacitors. Hence, Ti3C2Tx is commonly utilized as an electrode material in ion batteries such as Li+, Na+, K+, Mg2+, Ca2+, and Al3+ batteries. What is more, Ti2C has the biggest specific surface area among all of these potential MXene phases, and therefore, Ti2C has remarkably high gravimetric hydrogen storage capacities. In addition, Ti2CO2 materials display extremely high activity for CO oxidation, which makes it possible to design catalysts for CO oxidation at low temperatures. Furthermore, Ti3C2Tx with O, OH, and/or F terminations can be used for water purification owing to excellent water permeance, favorable filtration ability, and long‐time operation ability. This review supplies a relatively comprehensive summary of various applications of MXenes over the past few years.  相似文献   

11.
The ionic conductivity and small size of the hydrogen ion make it an ideal charge carrier for hydrogen‐ion energy storage (HES); however, high‐voltage two‐electrode configurations are difficult to construct as the result of the lack of efficient cathodic energy storage. Herein, the high potential fast anionic redox at the cathode of reduced graphene oxide (rGO) was applied by introducing redox additive electrolytes. By coupling the storing hydrogen ion in the Ti3C2Tx at the anode, a HES with a voltage of 1.8 V and a plateau voltage at 1.2 V was constructed. Compared with 2.2 Wh kg?1 for the low‐voltage Ti3C2Tx//Ti3C2Tx, the specific energy of asymmetric rGO//Ti3C2Tx reaches 34.4 Wh kg?1. Furthermore, it possesses an energy density of 23.7 Wh kg?1 at high power density of 22.5 kW kg?1. Thus, this study provides a novel guideline for constructing high‐voltage fast HES full cells.  相似文献   

12.
Two‐dimensional (2D) materials are promising candidates for advanced water purification membranes. A new kind of lamellar membrane is based on a stack of 2D MXene nanosheets. Starting from compact Ti3AlC2, delaminated nanosheets of the composition Ti3C2Tx with the functional groups T (O, OH, and/or F) can be produced by etching and ultrasonication and stapled on a porous support by vacuum filtration. The MXene membrane supported on anodic aluminum oxide (AAO) substrate shows excellent water permeance (more than 1000 L m−2 h−1 bar−1) and favorable rejection rate (over 90 %) for molecules with sizes larger than 2.5 nm. The water permeance through the MXene membrane is much higher than that of the most membranes with similar rejections. Long‐time operation also reveals the outstanding stability of the MXene membrane for water purification.  相似文献   

13.
In this work, we studied the formation of the rutile phase of titanium dioxide (TiO2) on delaminated MXene (d‐Ti3C2Tx) flakes by the reaction of Ti3C2Tx with amino acids in water. Three types of amino acids with varied side‐chain polarity were used to delaminate Ti3C2Tx. d‐Ti3C2Tx flakes formed stable colloidal solutions due to the negative surface charges of chemisorbed amino acids on the d‐Ti3C2Tx. Rutile formed on d‐Ti3C2Tx at room temperature upon the intercalation of aromatic amino acids and subsequent sonication of the solution, while flakes intercalated with aliphatic amino acids did not oxidize. X‐Ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy revealed the nanosize rutile formation on the surface of Ti3C2Tx flakes. The XPS results indicated the surface functionalization of histidine on d‐Ti3C2Tx flakes. As‐synthesized histidine functionalized rutile TiO2@d‐Ti3C2Tx hybrid was used for adsorption of Cu2+ ions from aqueous solution with a maximum uptake of 95 mg g?1.  相似文献   

14.
Lamellar membranes with well‐defined 2D nanochannels show fast, selective permeation, but the underlying molecular transport mechanism is unexplored. Now, regular robust MXene Ti3C2Tx lamellar membranes are prepared, and the size and wettability of nanochannels are manipulated by chemically grafted hydrophilic (?NH2) or hydrophobic (?C6H5, ?C12H25) groups. These nanochannels have a sharp difference in mass transfer behavior. Hydrophilic nanochannels, in which polar molecules form orderly aligned aggregates along channel walls, impart ultrahigh permeance (>3000 L m?2 h?1 bar?1), which is more than three times higher than that in hydrophobic nanochannels with disordered molecular configuration. In contrast, nonpolar molecules with disordered configuration in both hydrophilic and hydrophobic nanochannels have comparable permeance. Two phenomenological transport models correlate the permeance with the mass transport mechanism of molecules that display ordered and disordered configuration.  相似文献   

15.
《中国化学快报》2020,31(4):1039-1043
Ti3C2Tx, a most studied member of MXene family, shows promise as a candidate electrode for pseudocapacitor due to its electronic conductivity and hydrophilic surface. However, the unsatisfactory yield of Ti3C2Tx few-layer flakes significantly restricted it in real applications. Here, we proposed a simple solution to boost the yield of Ti3C2Tx few-layer flakes by decreasing precursor size. When using the small 500 mesh Ti3AlC2 powders as raw material, high yield of 65% was successfully achieved. Moreover, the as-received small flakes also exhibit an enhanced pseudocapacior performance owing to their excellent electrical conductivity, expanded interlayer space and more O content on the surface. This work not only sheds light on the cost effective mass production of Ti3C2Tx few-layer flakes, but also provides an efficient solution for the design of MXene electrodes with high pseudocapacior performance.  相似文献   

16.
Acceptorless photocatalytic dehydrogenation is not only a promising alternative to photocatalytic water splitting for hydrogen generation but also provides a green and sustainable strategy for the synthesis of value-added organic compounds. In this work, Ti3C2Tx/CdS nanocomposites were obtained by self-assembly of hexagonal CdS in the presence of preformed Ti3C2Tx nanosheets, which serves as a photocatalyst for acceptorless dehydrogenation of biomass-derived furfuryl alcohol (FOL) to furfural (FAL) and furoic acid (FA) in neutral and alkaline medium respectively, with simultaneous generation of stoichiometric hydrogen under visible light. Ti3C2Tx MXene acts as an efficient cocatalyst for the photocatalytic dehydrogenation of FOL over CdS, with an optimum performance achieved over 0.50 wt% Ti3C2Tx/CdS nanocomposite. This study provides an economic and sustainable strategy for the simultaneous valorization of biomass-derived FOL to produce FAL and FA as well as the production of clean energy hydrogen under mild condition based on noble metal-free semiconductor-based photocatalysts.  相似文献   

17.
MXenes, 2D compounds generated from layered bulk materials, have attracted significant attention in energy‐related fields. However, most syntheses involve HF, which is highly corrosive and harmful to lithium‐ion battery and supercapacitor performance. Here an alkali‐assisted hydrothermal method is used to prepare a MXene Ti3C2Tx (T=OH, O). This route is inspired from a Bayer process used in bauxite refining. The process is free of fluorine and yields multilayer Ti3C2Tx with ca. 92 wt % in purity (using 27.5 m NaOH, 270 °C). Without the F terminations, the resulting Ti3C2Tx film electrode (ca. 52 μm in thickness, ca. 1.63 g cm−3 in density) is 314 F g−1 via gravimetric capacitance at 2 mV s−1 in 1 m H2SO4. This surpasses (by ca. 214 %) that of the multilayer Ti3C2Tx prepared via HF treatments. This fluorine‐free method also provides an alkali‐etching strategy for exploring new MXenes for which the interlayer amphoteric/acidic atoms from the pristine MAX phase must be removed.  相似文献   

18.
Metal-organic frameworks (MOFs) with abundant active sites, a class of materials composed of metal nodes and organic ligands, is widely used for photocatalytic degradation of pollutants. However, the rapid recombination of photoinduced carriers of MOFs limits its photocatalytic degradation performance. Herein, Ti3C2Tx nanosheets-based NH2-MIL-101(Fe) hybrids with Schottky-heterojunctions were fabricated by in situ hydrothermal assembly for improved photocatalytic activity. The photodegradation efficiencies of the NH2-MIL-101(Fe)/Ti3C2Tx (N-M/T) hybrids for phenol and chlorophenol were 96.36 % and 99.83 % within 60 minutes, respectively. The N-M/T Schottky-heterojunction duly transferred electrons to the Ti3C2Tx nanosheets surface via built-in electric fields, effectively suppressing the recombination of photogenerated carriers, thereby improving the photocatalytic performance of NH2-MIL-101(Fe). Moreover, the Fe-mixed-valence in the N-M/T led to improvement in the efficiency of the in situ generated photo-Fenton reactions, further enhancing the photocatalytic activity with more generated reactive oxygen species (ROS). The study proposes a highly effective removal of phenolic pollutants in wastewater.  相似文献   

19.
使用湿法刻蚀方式将Ti3AlC2刻蚀剥离成单/少层Ti3C2TxMXene纳米片,采用电化学还原法制备枝状Co,然后以亲水的聚偏氟乙烯(PVDF)膜为基底通过真空抽滤制备Ti3C2Tx/枝状Co/PVDF复合光热膜。对复合材料的结构和形貌进行表征,研究了复合光热膜的光吸收性能和界面蒸发性能。结果表明,在模拟1个太阳光照下(光照强度为1kW·m-2),Ti3C2Tx/枝状Co/PVDF复合光热膜的光吸收率达到95.3%,纯水蒸发速率达到1.78kg·m-2·h-1,界面蒸发效率高达97.5%。此外,还测试了在模拟海水中的界面蒸发性能,蒸发冷凝得到的水达到世界卫生组织(WHO)和美国环境保护署(EPA)饮用水标准,蒸发速率达到1.61kg·m-2·h-1,循环5次后稳定在1.59kg·m-2·h-1。  相似文献   

20.
《中国化学快报》2020,31(4):988-991
Designing efficient electrocatalysts with low Pt loadings for hydrogen evolution reaction(HER) is urgently required for renewable and sustainable energy conversion.Here,we report a strategy that Pt nanoparticulates are spontaneously immobilized on porous MXene/MAX monolith as HER catalysts by utilizing the redox reaction between Ti_3C_2T_x MXene and [PtCl_4]~2 in H_2 PtCl_6 aqueous solution.By taking advantage of homogeneously distributed Pt nanoparticulates on highly electrically conductive porous Ti_3C_2T_x/Ti_3AlC_2 monolith,the as-prepared electrocatalysts show high catalytic performance for hydrogen evolution.Specifically,the binder-free electrocatalysts have Pt loadings as low as 8.9 μg/cm~2,with low overpotential of 43 mV at a curre nt density of 10 mA/cm~2 and low Tafel slope that three times lower than porous Ti_3C_2T_x/Ti_3AlC_2 without Pt loading.This strategy offers a new approach to constructing ultra-low Pt-loading HER catalysts on the basis of in situ redox reaction between noble metal ions and MXenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号