首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 814 毫秒
1.
实验测量了新型共沸混合工质HC170/FC116的池核沸腾传热特性.实验测量的加热面为紫铜表面,热流密度范围为50 kW/m2~300 kW/m2.同时实验结果与复叠温区常用制冷剂R503和R508B的传热性能进行了比较,发现新型共沸混合工质HC170/FC116的传热性能高于R508B.最后对实验数据回归得到了共沸混合工质传热系数计算关联式,此关联式的计算值与实验数据的偏差在士10%以内.  相似文献   

2.
实验测量了新型共沸混合工质HC170/HFC23的池核沸腾传热特性.加热面为紫铜表面,实验测量的压力范围为0.1 ~0.5MPa,热流范围为10 ~300 kW/m2.实验结果与传统的低温共沸混合工质R503和R508B的实验数据进行了比较,发现新型共沸工质HC170/HFC23的传热系数与R503相近并高于R508B.同时用现有的经验关联式对实验结果进行了预测,并对预测结果进行了分析.  相似文献   

3.
实验测量了二元混合工质HFC23/CFC13池核沸腾传热特性。加热面为紫铜表面,实验测量的压力范围为0.1~0.55 MPa,热流范围为10 kW/m2~300 kW/m2。实验数据同现有经验关联式的计算结果相比较,发现Fu jita andTsutsu i关联式和Thom e and Shak ir关联式对混合工质HFC23/CFC13的传热系数预测较准确,预测值与实验值之差≤±20%。  相似文献   

4.
HFC/HC混合工质的气液性平衡实验研究结果表明,该类型混合工质大多存在共沸现象。根据形成共沸点的热力学条件,以PR状态方程结合vdW混合法则,利用建立的二元相互作用系数kij差值关联模型,对10种HFCs工质(HFC23、HFC32、HFC125、HFC143a、HFC134a、HFC152a、HFC227ea、HFC236fa、HFC236ea、HFC245fa)与3种HCs工质(HC290、HC600a、HC600)相互组合而成的30种HFC/HC混合工质进行了共沸点判断和共沸点性质推算,并与已有气液相平衡实验数据的体系进行对比。结果表明该方法可用于推算HFC/HC混合工质共沸点性质。  相似文献   

5.
板式蒸发器非共沸工质换热与压降研究   总被引:2,自引:0,他引:2  
目前,针对单工质或近共沸工质的板式蒸发器研究已有开展,但对于非共沸工质的尚未见报道;本文结合实验 数据,欲将已有实验关联式推广到非共沸混合工质,经过比较发现,Hsieh的应用近共沸工质R410a的换热系数关联式 能很好的适应大温度滑移的混合工质,另外本文对摩擦压降关联式的系数经过适当的修正后也能应用于该工质。  相似文献   

6.
对非共沸氨水混合工质的池内核沸腾换热系数在氨浓度为0~100%的范围内进行了测定,并对氨水混合工质的沸腾传热特性进行了分析。利用氨水混合工质独特的热物性,比较了Stephan-Korner,Schlunder和Inoue的双组分混合工质预测关联式,并得出了预测氨水混合工质的池内沸腾换热系数的关联式,其预测精度为±35%。  相似文献   

7.
二元物系HFC125/HFC152a的热力学性质研究   总被引:7,自引:0,他引:7  
1引言二元混合工质HFC125/HFC152a臭氧破坏势为零,具有替代CFCs的潜力,也是我们所建议的三元代用混合工质HFC32/HFC125/HFC152a的二元子物系【‘」之一。迄今尚未见到关于该物系的热力学性质研究报导,本文对其进行PVTX实验研究、状态方程与混合规则关联和热力学性质计算。2实验实验在定容式PVTx实验装置上进行,测量精度为laTD528inK、IAPD51·4PPa、卜对训三0.1%和卜叫刮刀1%,采用直接观察法测量泡露点的温度和压力附加认定误差分别不超过50inK和4kPa[‘]。HFC125为美国杜邦公司提供,经天津大学分析中心分析…  相似文献   

8.
在实验数据基础上,建立了适用于HFC32/HFO1234ze二元混合工质的PR方程模型,并对实验数据、模型计算结果和Refprop 9.0计算结果进行了比较分析;作出了定温度下泡、露点压力随混合比的变化关系图以及定压力下饱和温度随混合比的变化关系图,分析得出HFC32/HFO1234ze二元混合工质属于非共沸工质,存在温度滑移,500 kPa压力下混合物在0.27/0.75处温度滑移达到最大为12.7℃;选取状态参考点后,作出了不同混合比下的混合工质的logP-h图,得出了随混合比变化混合工质的热力学性质的变化趋势,为系统的设计提供基本的热力学数据;最后,以R410A循环性能为基准,对不同混合比下混合工质的"相对循环性能"(COP_(mix)/COP_(R410A))进行了分析,为家用空调制冷剂的替代和系统的优化提供方向。  相似文献   

9.
本文对:R32/R134a(55.5%/44.5%)、R32/R134a(23%/77%)、R32/R1234ze(60.5%/39.5%)和R32/R1234ze(26.5%/73.5%)四种低GWP混合工质在内径2 mm的水平光滑圆管内的冷凝换热特性进行了实验研究和理论分析。设定饱和温度为35℃和40℃,对四种混合工质在不同干度下的冷凝换热系数进行了测试,发现四种混合工质的冷凝换热系数在1~8 kW·m~(-2)·K~(-1)之间,且冷凝换热系数随饱和温度升高而降低,随质量流量增加而增加;比较了相同工况、不同混合比下的混合工质换热系数,发现混合工质的传热恶化现象随着面积质量流量减小而变得明显。本文将实验得到的冷凝换热系数408个实验数据与8个模型的预测结果进行了比较,发现多数关联式的预测误差较大,仅有Fuji-Nagata关联式的预测值与实验值较为接近。  相似文献   

10.
分析了非共沸混合物在水平微翅管内强制对流蒸发换热的传热传质的特点,考察了影响非共沸混合工质强制对流蒸发换热的主要影响因素,建立了考虑相界面传质阻力和微翅管二次流效应的换热系数的计算模型,利用本文模型的计算结果与实验数据进行了比较,吻合较好。在高质量流量和高干度(x>0.3)下,理论预测值与实验值的平均偏差不大于10%。  相似文献   

11.
分离式热管换热器传热特性的实验研究   总被引:1,自引:0,他引:1  
本文在自行设计分离式热管实验装置的基础上,对其传热特性进行了实验研究。其工作温度为170~250℃,热流密度为25~50 kW/m~2。蒸发段和冷凝段构成相同,均是由7根直径30 mm的无缝钢管短管束组成,管长为160 mm,带有紧套的钢帛环形肋片结构尺寸为:外径45 mm、厚1 mm、片间距4 mm。实验结果表明,在本实验条件下,分离式热管的最佳充液率按管束总容量计为18%~38%。根据实验结果拟合了最佳充液率(24%)下蒸发段内部平均沸腾换热系数和冷凝段内部凝结换热努塞尔数综合关系式。  相似文献   

12.
An experimental study of condensation heat transfer characteristics of flow inside horizontal micro-fin tubes is carried out using R410A, R22, and R32 as the test fluids. This study especially focuses on the influence of heat transfer area upon the condensation heat transfer coefficients. The test sections were made of double tubes using the counter-flow type; the refrigerants condensation inside the test tube enabled heat to exchange with cooling water that flows from the annular side. The saturation temperature and pressure of the refrigerants were measured at the inlet and outlet of the test sections to defined state of refrigerants, and the surface temperatures of the tube were measured. A differential pressure transducer directly measured the pressure drops in the test section. The heat transfer coefficients and pressure drops were calculated using the experimental data. The condensation heat transfer coefficient was measured at the saturation temperature of 48°C with mass fluxes of 50–380 kg/(m2s) and heat fluxes of 3–12 kW/m2. The values of experimental heat transfer coefficient results are compared with the predicted values from the existing correlations in the literature, and a new condensation heat transfer coefficient correlation is proposed.  相似文献   

13.
In this article, an experimental investigation is performed to measure the boiling heat transfer coefficient of water flow in a microchannel with a hydraulic diameter of 500 μm. Experimental tests are conducted with heat fluxes ranging from 100 to 400 kW/m2, vapor quality from 0 to 0.2, and mass fluxes of 200, 400, and 600 kg/m2s. Also, this study has modified the liquid Froude number to present a flow pattern transition toward an annular flow. Experimental results show that the flow boiling heat transfer coefficient is not dependent on mass flux and vapor quality but on heat flux to a certain degree. The measured heat transfer coefficient is compared with a few available correlations proposed for macroscales, and it is found that previous correlations have overestimated the flow boiling heat transfer coefficient for the test conditions considered in this work. This article proposes a new correlation model regarding the boiling heat transfer coefficient in mini- and microchannels using boiling number, Reynolds number, and modified Froude number.  相似文献   

14.
G. Arslan  N. Eskin 《实验传热》2013,26(6):707-720
In this study, condensation of pure refrigerant R134a vapor inside a vertical 18° helical microfin tube was experimentally investigated. Tests were performed at saturation pressure of 5.7–5.9 bar with mass fluxes of 20–100 kg/m2s and heat fluxes of 1.7–5.3 kW/m2. The effects of mass flux and the temperature difference between the refrigerant and tube wall (ΔT) on the heat transfer performance were analyzed throughout experimental data. For experiments in which ΔT is more than 2.5°C, the average condensation Nusselt number showed a tendency to be independent from ΔT. Heat transfer enhancement ratio was found to be 1.59–1.71, which is always higher than the heat transfer area enhancement factor (1.55). Fins always act as a turbulence promoter in the given experimental data range. Finally, the most widely used heat transfer coefficient correlations for condensation inside microfin tubes were analyzed through the experimental data. Best fit was obtained with Yu and Koyama's correlation with an absolute mean deviation of 17% and Kedzierski and Goncalves's correlation with an absolute mean deviation of 19%.  相似文献   

15.
This study focuses on energy and entropy analysis to theoretically investigate the performance of a pilot scale dual heated humidification-dehumidification (HDH) desalination system. Two cases of HDH systems are considered in the analysis. The first case is a dual heated (DH) cycle consisting of 1.59 kW air heater and 1.42 kW water heater with a heat rate ratio of 0.89 (CAOW-DH-I). Whereas the second case is a dual heated HDH cycle comprising of 1.59 kW air heater and 2.82 kW water heater with a heat rate ratio of 1.77 (CAOW-DH-II). As a first step, mathematical code was developed based on heat and mass transfer and entropy generation within the major components of the system. The code was validated against the experimental data obtained from a pilot scale HDH system and was found to be in a good agreement with the experimental results. Theoretical results revealed that there is an optimal mass flowrate ratio at which GOR is maximized, and entropy generation is minimized. Furthermore, the degree of irreversibility within the humidifier component is low and approaches zero, while the specific entropy generation within other components are relatively high and are of the same order of magnitude. Entropy analysis also showed that the dual heated system with heat rate ratio greater than unity is better than the one with heat rate ratio less than unity.  相似文献   

16.
The accuracy of calculations of the radiation emissions from argon plasmas produced by the shock layers over blunt bodies is assessed. The existing theoretical and experimental spectroscopic data on argon are collated. A set of such data is selected for use in the radiative transfer calculations. Calculations are performed for the stagnation regions of the shock layers over laboratory-sized models using these data, and the results are compared with the existing experimental results obtained in a shock-tube. Through this comparison and a parametric study it is shown that radiative heat fluxes at the stagnation point in an argon environment can be calculated within an uncertainty of about 15%. It is shown also that radiative heat fluxes of the order of 100 kW/cm2 can be produced in the existing laboratory facilities.  相似文献   

17.
Spray cooling is an effective tool to dissipate high heat fluxes from hot surfaces. This article thoroughly investigates the effect of thickness of a hot stainless steel plate on the cooling time, cooling rate, heat flux, and heat transfer coefficient under constant mass flow rate maintained at 1 MPa using water as the coolant. Cylindrical samples of stainless steel with constant diameter (D = 25 mm) and thickness (δ = 7.5, 12, 16.5, and 21 mm) were used in the present study. Critical droplet diameter to achieve an ultra-fast cooling rate of 300°C/s was estimated by using an analytical model for samples of varying thicknesses. The analytical model (one side spray cooling) showed good agreement with experimental results with a relative error of 3.2% in the plate thickness range of 1–12 mm. An increasing trend in maximum heat flux was found with increasing thickness of the plate. Maximum heat flux as high as 1,800 kW/m2 was achieved for a 21-mm-thick sample. Heat transfer coefficients in the range 0.092–96.24 kW/m2K, 0.111–98.9 kW/m2K, 0.074–63.4 kW/m2K, and 0.127–55.63 kW/m2K were reported for sample of varying thicknesses in the present study. Limited published work is available with reference to water spray cooling dynamics and thickness of stainless steel plate. Therefore, the present study focuses on the correlation between the thickness of the plate and spray dynamics of water spray cooling.  相似文献   

18.
This study reports an experimental investigation of evaporative heat transfer and pressure drop of R-134a flowing downward inside vertical corrugated tubes with different corrugation pitches. The double tube test section is 0.5 m long with refrigerant flowing in the inner tube and hot water flowing in the annulus. The inner tubes are comprised of one smooth tube and three corrugated tubes with different corrugation pitches of 6.35, 8.46, and 12.7 mm. The test runs are performed at evaporating temperatures of 10°C, 15°C, and 20°C; heat fluxes of 20, 25, and 30 kW/m2; and mass fluxes of 200, 300, and 400 kg/m2s. The experimental data obtained from the smooth tube are plotted with flow pattern map for vertical flow. Comparisons between smooth and corrugated tubes on the heat transfer and pressure drop are also discussed. It is observed that the heat transfer coefficient and frictional pressure drop obtained from the corrugated tubes are higher than those from the smooth tube. Furthermore, the heat transfer coefficient and frictional pressure drop increase as the corrugation pitch decreases. The maximum heat transfer enhancement factor and penalty factor are up to 1.22 and 4.0, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号