首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 521 毫秒
1.
2.
3.
The kinetic behavior of an n-species (n ≥ 3) aggregation-annihilation chain reaction model is studied. In this model, an irreversible aggregation reaction occurs between any two clusters of the same species, and an irreversible complete annihilation reaction occurs only between two species with adjacent number. Based on the rnean-field theory, we investigate the rate equations of the process with constant reaction rates to obtain the asymptotic solutions of the clustermass distributions for the system. The results show that the kinetic behavior of the system not only depends crucially on the ratio of the aggregation rate I to the annihilation rate J, but also has relation with the initial concentration of each species and the species number's odevity. We find that the cluster-mass distribution of each species obeys always a scaling law. The scaling exponents may strongly depend on the reaction rates for most cases, however, for the case in which the ratio of the aggregation rate to the annihilation rate is equal to a certain value, the scaling exponents are only dependent on the initial concentrations of the reactants.  相似文献   

4.
We have studied the kinetic behaviours of irreversible aggregation-annihilation models with cluster removals. In the models, an irreversible aggregation reaction occurs between any two clusters of the same species and an irreversible annihilation reaction occurs simultaneously between two different species; meanwhile, the clusters of large size are gradually removed from the system. In a mean-field limit, we obtain the general solutions of the cluster-mass distributions for the cases with an arbitrary removal probability. We found that the cluster-mass distribution of either species satisfies a generalized or modified scaling form. The results also indicate that the evolution behaviours of the systems depend strongly on the details of the reaction events.  相似文献   

5.
6.
7.
8.
9.
10.
11.
An aggregation-migration-annihilation model is proposed for a two-species-group system. In the system,aggregation reactions occur between any two aggregates of the same species and migration reactions between two different species in the same group and joint annihilation reactions between two species from different groups. The kinetics of the system is then investigated in the framework of the mean-field theory. It is found that the scaling solutions of the aggregate size distributions depend crucially on the ratios of the equivalent aggregation rates of species groups to the annihilation rates. Each species always scales according to a conventional or modified scaling form; moreover, the governing scaling exponents are nonuniversal and dependent on the reaction details for most cases.  相似文献   

12.
An aggregation-migration-annihilation model is proposed for a two-species-group system. In the system, aggregation reactions occur between any two aggregates of the same species and migration reactions between two different species in the same group and joint annihilation reactions between two species from different groups. The kinetics of the system is then investigated in the framework of the mean-field theory. It is found that the scaling solutions of the aggregate size distributions depend crucially on the ratios of the equivalent aggregation rates of species groups to the annihilation rates. Each species always scales according to a conventional or modified scaling form; moreover, the governing scaling exponents are nonuniversal and dependent on the reaction details for most cases.  相似文献   

13.
柯见洪  庄友谊  林振权  叶鹏 《中国物理》2005,14(12):2602-2608
We propose a solvable multi-species aggregation--migration model, in which irreversible aggregations occur between any two aggregates of the same species and reversible migrations occur between any two different species. The kinetic behaviour of an aggregation--migration system is then studied by means of the mean-field rate equation. The results show that the kinetics of the system depends crucially on the details of reaction events such as initial concentration distributions and ratios of aggregation rates to migration rate. In general, the aggregate mass distribution of each species always obeys a conventional or a generalized scaling law, and for most cases at least one species is scaled according to a conventional form with universal constants. Moreover, there is at least one species that can survive finally.  相似文献   

14.
We study the kinetic behavior of a two-species aggregation-migration model in which an irreversible aggregation occurs between any two clusters of the same species and a reversible migration occurs simultaneously between two different species. For a simple model with constant aggregation rates and with the migration rates KA(i;j)=K'A(i;j) ∝ijv1 and KB(i;j)=K'B(i;j) ∝ijv2, we find that the evolution behavior of the system depends crucially on the values of the indexes v1 and v2. The aggregate size distribution of either species obeys a conventional scaling law for most cases. Moreover, we also generalize the two-species system to the multi-species case and analyze its kinetic behavior under the symmetrical conditions.  相似文献   

15.
We introduce a two-species symbiosis-driven growth model, in which two species can mutually benefit for their monomer birth and the self-death of each species simultaneously occurs. By means of the generalized rate equation, we investigate the dynamic evolution of the system under the monodisperse initial condition. It is found that the kinetic behaviour of the system depends crucially on the details of the rate kernels as well as the initial concentration distributions. The cluster size distribution of either species cannot be scaled in most cases; while in some special cases, they both consistently take the universal scaling form. Moreover, in some cases the system may undergo a gelation transition and the pre-gelation behaviour of the cluster size distributions satisfies the scaling form in the vicinity of the gelation point. On the other hand, the two species always live and die together.  相似文献   

16.
We investigate the kinetic behavior of a two-species catalysis-driven aggregation model, in which coagulation of species A occurs only with the help of species B. We suppose the monomers of species B are stable and cannot selfcoagulate in reaction processes. Meanwhile, the monomers are continuously injected into the system. The model with a constant rate kernel is investigated by means of the mean-field rate equation. We show that the Mneties of the system depends crucially on the details of the input term. The injection rate of species B is assumed to take the given time- dependent form K(t) -t^λ, and the sealing solution of the duster size distribution is then investigated analytically. It is found that the cluster size distribution can satisfy the conventional or modified scaling form in most cases.  相似文献   

17.
We propose a novel two-species aggregation-annihilation model,in which irreversible aggregation reactions occur between any two aggregates of the same species and biased annihilations occur simultaneously between two different species.The kinetic scaling behavior of the model is then analytically investigated by means of the mean-field rate equation.For the system without the self-aggregation of the un-annihilated species,the aggregate size distribution of the annihilated species always approaches a modified scaling form and vanishes finally; while for the system with the self-aggregation of the un-annihilated species,its scaling behavior depends crucially on t,he details of the rate kernels.Moreover,the results also exhibit that both species are conserved together in some cases,while only the un-annihilated species survives finally in other cases.  相似文献   

18.
19.
We propose a reversible model of the migration-driven aggregation-fragmentation process with the symmetric migration rate kernels K(k;j)=K'(k;j)=λkjυ and the constant aggregation rates I1, I2 and fragmentation rates J1, J2. Based on the mean-field theory, we investigate the evolution behavior of the aggregate size distributions in several cases with different values of index υ. We find that the fragmentation reaction plays a more important role in the kinetic behaviors of the system than the aggregation and migration. When J1=0 and J2 =0, the aggregate size distributions ak(t) and bk(t) obey the conventional scaling law, while when J1>0 and J2>0, they obey the modified scaling law with an exponential scaling function. The total mass of either species remains conserved.  相似文献   

20.
We propose a reversible model of the migration-driven aggregation-fragmentation process with the sym-metric migration rate kernels K(k;j) = K‘(k;j) = λkjv and the constant aggregation rates I1, I2 and fragmentationrates J1, J2. Based on the mean-field theory, we investigate the evolution behavior of the aggregate size distributions inseveral cases with different values of index v. We find that the fragmentation reaction plays a more important role in the kinetic behaviors of the system than the aggregation and migration. When J1 = 0 and J2 = 0, the aggregate sizedistributions ak(t) and bk(t) obey the conventional scaling law, while when J1 > 0 and J2 > 0, they obey the modifiedscaling law with an exponential scaling function. The total mass of either species remains conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号