首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The kinetics describing the thermal decomposition of Li4SiO4 and Li2SiO3 have been analysed. While Li4SiO4 decomposed on Li2SiO3 by lithium sublimation, Li2SiO3 was highly stable at the temperatures studied. Li4SiO4 began to decompose between 900 and 1000 °C. However, at 1100 °C or higher temperatures, Li4SiO4 melted, and the kinetic data of its decomposition varied. The activation energy of both processes was estimated according to the Arrhenius kinetic theory. The energy values obtained were −408 and −250 kJ mol−1 for the solid and liquid phases, respectively. At the same time, the Li4SiO4 decomposition process was described mathematically as a function of a diffusion-controlled reaction into a spherical system. The activation energy for this process was estimated to be −331 kJ mol−1. On the other hand, Li2SiO3 was not decomposed at high temperatures, but it presented a very high preferential orientation after the heat treatments.  相似文献   

2.
Effect of surface fluorination and conductive additives on the charge/discharge behavior of lithium titanate (Li4/3Ti5/3O4) has been investigated using F2 gas and vapor grown carbon fiber (VGCF). Surface fluorination of Li4/3Ti5/3O4 was made using F2 gas (3 × 104 Pa) at 25-150 °C for 2 min. Charge capacities of Li4/3Ti5/3O4 samples fluorinated at 70 °C and 100 °C were larger than those for original sample at high current densities of 300 and 600 mA/g. Optimum fluorination temperatures of Li4/3Ti5/3O4 were 70 °C and 100 °C. Fibrous VGCF with a large surface area (17.7 m2/g) increased the utilization of available capacity of Li4/3Ti5/3O4 probably because it provided the better electrical contact than acetylene black (AB) between Li4/3Ti5/3O4 particles and nickel current collector.  相似文献   

3.
The garnets Li3Nd3W2O12 and Li5La3Sb2O12 have been prepared by heating the component oxides and hydroxides in air at temperatures up to 950 °C. Neutron powder diffraction has been used to examine the lithium distribution in these phases. Both compounds crystallise in the space group with lattice parameters a=12.46869(9) Å (Li3Nd3W2O12) and a=12.8518(3) Å (Li5La3Sb2O12). Li3Nd3W2O12 contains lithium on a filled, tetrahedrally coordinated 24d site that is occupied in the conventional garnet structure. Li5La3Sb2O12 contains partial occupation of lithium over two crystallographic sites. The conventional tetrahedrally coordinated 24d site is 79.3(8)% occupied. The remaining lithium is found in oxide octahedra which are linked via a shared face to the tetrahedron. This lithium shows positional disorder and is split over two positions within the octahedron and occupies 43.6(4)% of the octahedra. Comparison of these compounds with related d0 and d10 phases shows that replacement of a d0 cation with d10 cation of the same charge leads to an increase in the lattice parameter due to polarisation effects.  相似文献   

4.
The structures of new phases Li6CaLa2Sb2O12 and Li6.4Ca1.4La2Sb2O12 have been characterised using neutron powder diffraction. Rietveld analyses show that both compounds crystallise in the space group la3?d and contain the lithium cations in a complex arrangement with occupational disorder across oxide tetrahedra and distorted oxide octahedra, with considerable positional disorder in the latter. Variable temperature neutron diffraction experiments on Li6.4Ca1.4La2Sb2O12 show the structure is largely invariant with only a small variation in the lithium distribution as a function of temperature. Impedance spectroscopy measurements show that the total conductivity of Li6CaLa2Sb2O12 is several orders of magnitude smaller than related lithium-stuffed garnets with σ=10−7 S cm−1 at 95 °C and an activation energy of 0.82(3) eV. The transport properties of the conventional garnets Li3Gd3Te2O12, Li3Tb3Te2O12, Li3Er3Te2O12 and Li3Lu3Te2O12 have been evaluated and consistently show much lower values of conductivity, σ≤4.4×10−6 S cm−1 at 285 °C and activation energies in the range 0.77(4)≤Ea/eV≤1.21(3).  相似文献   

5.
Garnet-structure related metal oxides with the nominal chemical composition of Li5La3Nb2O12, In-substituted Li5.5La3Nb1.75In0.25O12 and K-substituted Li5.5La2.75K0.25Nb2O12 were prepared by solid-state reactions at 900, 950, and 1000 °C using appropriate amounts of corresponding metal oxides, nitrates and carbonates. The powder XRD data reveal that the In- and K-doped compounds are isostructural with the parent compound Li5La3Nb2O12. The variation in the cubic lattice parameter was found to change with the size of the dopant ions, for example, substitution of larger In3+(rCN6: 0.79 Å) for smaller Nb5+ (rCN6: 0.64 Å) shows an increase in the lattice parameter from 12.8005(9) to 12.826(1) Å at 1000 °C. Samples prepared at higher temperatures (950, 1000 °C) show mainly bulk lithium ion conductivity in contrast to those synthesized at lower temperatures (900 °C). The activation energies for the ionic conductivities are comparable for all samples. Partial substitution of K+ for La3+ and In3+ for Nb5+ in Li5La3Nb2O12 exhibits slightly higher ionic conductivity than that of the parent compound over the investigated temperature regime 25-300 °C. Among the compounds investigated, the In-substituted Li5.5La3Nb1.75In0.25O12 exhibits the highest bulk lithium ion conductivity of 1.8×10−4 S/cm at 50 °C with an activation energy of 0.51 eV. The diffusivity (“component diffusion coefficient”) obtained from the AC conductivity and powder XRD data falls in the range 10−10-10−7 cm2/s over the temperature regime 50-200 °C, which is extraordinarily high and comparable with liquids. Substitution of Al, Co, and Ni for Nb in Li5La3Nb2O12 was found to be unsuccessful under the investigated conditions.  相似文献   

6.
57Fe Mössbauer spectroscopy is a powerful tool to investigate redox reactions during in electrochemical lithium insertion/extraction processes. Electrochemical oxidation of LiFeIIPO4 (triphylite) in Li-ion batteries results in FeIIIPO4 (heterosite). LiFePO4 was synthesized by solid state reaction at 800 °C under Ar flow from Li2CO3, FeC2O4·2H2O and NH4H2PO4 precursors in stoichiometric composition. FePO4 was prepared from chemical oxidation of LiFePO4 using bromine as oxidative agent. For both materials a complete 57Fe Mössbauer study as a function of the temperature has been carried out. The Debye temperatures are found to be θM=336 K for LiFePO4 and θM=359 K for FePO4, leading to Lamb-Mössbauer factors f300 K=0.73 and 0.77, respectively. These data will be useful for a precise estimation of the relative amounts of each species in a mixture.  相似文献   

7.
A new high-pressure phase of LiAlO2 has been recovered through a shock recovery technique at pressures above 9 GPa. This new phase has been refined as a tetragonal structure with lattice parameters of a=0.38866(8) nm and c=0.83001(18) nm. Its calculated density is 3.51 g/cm3, about 34% denser than γ-LiAlO2. The aluminum and lithium cations in this new phase are six-fold coordinated, as in α-LiAlO2 and the structure of this new phase is similar to tetragonal LiFeO2. This new high-pressure phase is stable at temperatures up to 773 K.  相似文献   

8.
Two types of intermetallic lithium alloys, Li21Si5 and Li17Sn4 (previously Li22Si5 and Li22Sn5), were prepared for the first time using microwave-assisted solid-state reaction. The optimum oven power for their preparation is 80-60%, and the irradiation times are 5 min for Li21Si5 or 10 min for Li17Sn4. A cheap alumina crucible was found to be the most suitable container in quick (less than 10 min) microwave reactions for Li-containing alloys. The synthesized compounds were characterized by PXRD. Mössbauer spectroscopy was used to characterize Li17Sn4 under different conditions. The hyperfine interaction parameters of 119Sn in Li17Sn4 show a typical Li-Sn alloy Sn isomer shift (1.88 mm/s). The oxidization processes of the two intermetallic lithium alloys in air were investigated. The microwave method was found to be simple, fast and efficient, with high selectivity for the preparation of these compounds.  相似文献   

9.
LiMSnO4 (M=Fe, In) compounds were synthesized by high temperature solid-state reaction method and the electrochemical studies were carried out vs. lithium metal. Lithium is reversibly intercalated and deintercalated in LiFeSnO4 with a constant capacity of ∼90 mAh/g. In situ X-ray diffraction data show that ramsdellite structure is stable for lithium intercalation and deintercalation in LiFeSnO4. Galvanostatic discharge/charge of LiFeSnO4 in the voltage window 0.05-2.0 V shows a reversible capacity of ∼100 mAh/g. The observed capacity in LiFeSnO4 is due to the two processes involving alloying/dealloying of Li4.4Sn and formation/decomposition of Li2O. In contrast, the new isotypic oxide LiInSnO4 does not exhibit any lithium intercalation due to the absence of mixed valence for indium. Its reversible capacity is strongly dependent on the voltage window. LiInSnO4 exhibits severe capacity fading on cycling in the voltage window 0.05-2.0 V, but shows a stable capacity of ∼90 mAh/g in the voltage range 0.75-2.0 V.  相似文献   

10.
The compound Na5Li3Ti2S8 has been synthesized by the reaction of Ti with a Na/Li/S flux at 723 K. Na5Li3Ti2S8 crystallizes in a new structure type with four formula units in space group C2/c of the monoclinic system. The structure contains three crystallographically independent Na+ cations and two crystallographically independent Li+ cations. Na5Li3Ti2S8 possesses a channel structure that features two-dimensional layers built from Li(1)S4 and TiS4 tetrahedra. The layers, which are stacked along c, comprise eight-membered rings and sixteen-membered rings. Na(3)+ cations are located between the eight-membered rings and Na(1)+, Na(2)+, and Li(2)+ cations are located between the sixteen-membered rings. These cations are each octahedrally coordinated by six S2− anions. The ionic conductivity σT of Na5Li3Ti2S8 ranges from 8.8×10−6 S/cm at 303 K to 3.8×10−4 S/cm at 483 K. The activation energy Ea is 0.40 eV.  相似文献   

11.
The complex conductivity spectra of mixed alkali borate glasses of compositions y [xLi2O·(1−x)Na2O]·(1−y)B2O3 (with x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0; y=0.1, 0.2, 0.3) in a frequency range between 10−2 Hz and 3 MHz and at temperatures ranging from 298 to 573 K have been studied. For each glass composition the conductivities show a transition from the dc values into a dispersive regime where the conductivity is found to increase continuously with frequency, tending towards a linear frequency dependence at sufficiently low temperatures. Mixed alkali effects (MAEs) in the dc conductivity and activation energy are identified and discussed. It has been for the first time found that the strength of the MAE in the logarithm of the dc conductivity linearly increases with the total alkali oxide content, y, and the reciprocal temperature, 1/T.  相似文献   

12.
The transport properties and lithium insertion mechanism into the first mixed valence silver-copper oxide AgCuO2 and the B-site mixed magnetic delafossite AgCu0.5Mn0.5O2 were investigated by means of four probes DC measurements combined with thermopower measurements and in situ XRD investigations. AgCuO2 and AgCu0.5Mn0.5O2 display p-type conductivity with Seebeck coefficient of Q=+2.46 and +78.83 μV/K and conductivity values of σ=3.2×10−1 and 1.8×10−4 S/cm, respectively. The high conductivity together with the low Seebeck coefficient of AgCuO2 is explained as a result of the mixed valence state between Ag and Cu sites. The electrochemically assisted lithium insertion into AgCuO2 shows a solid solution domain between x=0 and 0.8Li+ followed by a plateau nearby 1.7 V (vs. Li+/Li) entailing the reduction of silver to silver metal accordingly to a displacement reaction. During the solid solution, a rapid structure amorphization was observed. The delafossite AgCu0.5Mn0.5O2 also exhibits Li+/Ag+ displacement reaction in a comparable potential range than AgCuO2; however, with a prior narrow solid solution domain and a less rapid amorphization process. AgCuO2 and AgCu0.5Mn0.5O2 provide a discharge gravimetric capacity of 265 and 230 mA h/g above 1.5 V (vs. Li+/Li), respectively, with no evidence of a new defined phases.  相似文献   

13.
Li4Ti5O12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li4Ti5O12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s−1, indicating that Li4Ti5O12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li+ ion was estimated to be 6.8×10−11 cm2 s−1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li+ ions become more mobile at 1.55 V vs. Li/Li+, corresponding to a two-phase region, and the chemical diffusion coefficients of Li+ ion ranged from 10−10 to 10−12 cm2 s−1 at various potentials. The chemical diffusion coefficients of Li+ ion in Li4Ti5O12 were also estimated from PITT. They were in a range of 10−11-10−12 cm2 s−1.  相似文献   

14.
The high-pressure behavior of Li2CO3 is studied up to 25 GPa with synchrotron angle-dispersive powder X-ray diffraction in diamond anvil cells and synthesis using a multi-anvil apparatus. A new non-quenchable hexagonal polymorph (P63/mcm, Z=2) occurs above 10 GPa with carbonate groups in a staggered configuration along the c-axis—a=4.4568(2) Å and c=5.1254(6) Å at 10 GPa. Two columns of face-shared distorted octahedra around the Li atoms are linked through octahedral edges. The oxygen atoms are coordinated to one carbon atom and four lithium atoms to form a distorted square pyramid. Splittings of X-ray reflections for the new polymorph observed above about 22 GPa under non-hydrostatic conditions arise from orthorhombic or monoclinic distortions of the hexagonal lattice. The results of this study are discussed in relation to the structural features found in other Me2CO3 carbonates (Me: Na, K, Rb, Cs) at atmospheric conditions.  相似文献   

15.
Nd18Li8Co3FeO39−y, Nd18Li8CoFe3O39−y and Nd18Li8Co3TiO39−y have been synthesised and characterised by neutron powder diffraction, magnetometry and Mössbauer spectroscopy. Their cubic structure (Pm3?n, a∼11.9 Å) is based on intersecting <1 1 1> chains comprised of alternating octahedral and trigonal-prismatic coordination sites. These chains lie within hexagonal-prismatic cavities formed by a Nd-O framework. Each compound has an incomplete oxide sublattice (y∼1), with vacancies located around the octahedral sites that lie at the points of chain intersection. These sites are fully occupied by a disordered arrangement of transition-metal cations but only 75% of the remaining octahedral sites are occupied. The trigonal-prismatic sites are fully occupied by lithium except in the case of Nd18Li8CoFe3O39−y where some iron is present. Antiferromagnetic interactions are present on the Nd sublattice in each composition, but a spin glass forms below 5 K when a high concentration of spins is also present on the octahedral sites.  相似文献   

16.
Orthorhombic lithium zinc molybdate was first chosen and explored as a candidate for double beta decay experiments with 100Mo. The phase equilibria in the system Li2MoO4-ZnMoO4 were reinvestigated, the intermediate compound Li2Zn2(MoO4)3 of the α-Cu3Fe4(VO4)6 (lyonsite) type was found to be nonstoichiometric: Li2−2xZn2+x(MoO4)3 (0≤x≤0.28) at 600 °C. The eutectic point corresponds to 650 °C and 23 mol% ZnMoO4, the peritectic point is at 885 °C and 67 mol% ZnMoO4. Single crystals of the compound were prepared by spontaneous crystallization from the melts and fluxes. In the structures of four Li2−2xZn2+x(MoO4)3 crystals (x=0; 0.03; 0.21; 0.23), the cationic sites in the face-shared octahedral columns were found to be partially filled and responsible for the compound nonstoichiometry. It was first showed that with increasing the x value and the number of vacancies in M3 site, the average M3-O distance grows and the lithium content in this site decreases almost linearly. Using the low-thermal-gradient Czochralski technique, optically homogeneous large crystals of lithium zinc molybdate were grown and their optical, luminescent and scintillating properties were explored.  相似文献   

17.
The lithium insertion in the positive electrode material Li1+αV3O8 (α close to 0.1-0.2) includes a phenomenon near 2.6 V (voltage vs. the Li metal electrode), the mechanism being a two-phase process with the transformation from ca. Li2.9V3O8 to ca. Li4V3O8. Near 2.4 V down to 2 V, Li is inserted in a single phase up to ca. Li5V3O8. Chemical Li insertions have been performed in a Li1.1V3O8 precursor prepared at 350 °C and the structures of the products Li2.7V3O8 (before the 2.6 V phenomenon) and Li4.8V3O8 (near the expected maximum) have been studied by a combined Rietveld refinement of X-ray and neutron diffraction data. The structure of Li4.8V3O8 is an ordered derivative of the rock-salt type, with all the Li and V ions in slightly distorted octahedral sites. Li2.7V3O8 has a poor crystallization state and, although the expected V3O8 layers are obtained, only a part of the Li sites have been reliably determined. Between adjacent V3O8 layers, several unidentified sites are likely weakly occupied, thus giving a markedly disordered character for the structure of the compound formed just before the transition at 2.6 V. The atomic shifts at the transition are briefly discussed.  相似文献   

18.
A new phase, Li4VO(PO4)2 was synthesized by a lithium ion exchange reaction from protonic phase, VO(H2PO4)2. The structure was determined from neutron and synchrotron powder diffraction data. The exchange of lithium causes a stress, leading to a change in the dimensionality of the structure from 3D to 2D by the displacement of oxygen atoms. Thus, Li4VO(PO4)2 crystallizes in P4/n space group with lattice parameters a=8.8204(1) Å and c=8.7614(2) Å. It consists of double layers [V2P4O18] formed by successive chains of VO6 octahedra and VO5 pyramids with isolated PO4 tetrahedra. The lithium ions located in between the layers promote mobility. Furthermore, the ionic conductivity of 10−4 S/cm at 550 °C for Li4VO(PO4)2 confirms the mobility of lithium ions in the layers. On the other hand, VO(H2PO4)2 exhibits a conductivity of 10−4 S/cm at room temperature due to the presence of protons in tunnels.  相似文献   

19.
Li2Rh3B2 has been synthesized at 1000 °C from a stoichiometric mix of rhodium and boron and an excess of lithium. Li2Rh3B2 crystallizes in the orthorhombic space group Pbam (no. 55, Z=2) with room temperature lattice constants a=5.7712(1) Å, b=9.4377(2) Å, c=2.8301(1) Å and cell volume 154.149(6) Å3. The structure was solved from single crystal X-ray diffraction yielding the final R indices (all data) R1=2.8% and wR2=4.7%. The structure is a distortion of the CeCo3B2 structure type, containing a network of Rh6B trigonal prisms and short Li-Li contacts of 2.28(2) Å. Li2Rh3B2 is a diamagnetic metal with a room temperature resistivity of 19 μΩ cm, as determined by magnetic susceptibility and single crystal transport measurements. The measured diamagnetism and electronic structure calculations show that Li2Rh3B2 contains rhodium in a d10 configuration.  相似文献   

20.
The magnetic, thermoelectric, and structural properties of LixNayCoO2, prepared by intercalation and deintercalation chemistry from the thermodynamically stable phase Li0.41Na0.31CoO2, which has an alternating Li/Na sequence along the c-axis, are reported. For the high Li-Na content phases Li0.41Na0.31CoO2 and Li0.40Na0.43CoO2, a sudden increase in susceptibility is seen below 50 K, whereas for Li0.21Na0.14CoO2 an antiferromagnetic-like transition is seen at 10 K, in spite of a change from dominantly antiferromagnetic to dominantly ferromagnetic interactions with decreasing alkali content. The Curie constant decreases linearly with decreasing alkali content, at the same time the temperature-independent contribution to the susceptibility increases, indicating that as the Co becomes more oxidized the electronic states become more delocalized. Consistent with this observation, the low alkali containing phases have metallic-like resistivities. The 300 K thermopowers fall between 30 μV/K (x+y=0.31) and 150 μV/K (x+y=0.83).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号