首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Multiple labeling of nucleic acids by intercalative dyes is a promising method for ultrasensitive nucleic acid assays. The properties of the fast dissociation and instability of dye–DNA complexes may prevent from their wide applications in CE‐LIF nucleic acid analysis. Here, we describe an optimum CE focusing method by using appropriately paired sample and separation buffers, Tris‐glycine buffer and Tris‐glycine‐acetic acid buffer. The developed method was applied in both uncoated and polyacrylamide coated fused‐silica capillary‐based CE‐LIF analysis while the sample and separation buffers were conversely used. The complexes of intercalative dye benzoxazolium‐4‐pyridinium dimer and dsDNA were greatly focused (separation efficiency: 1.8 million theoretical plates per meter) by transient isotachophoresis mechanism in uncoated capillary, and moderately focused by transient isotachophoresis in combination of field amplified sample stacking and further stabilized by the paired buffer in polyacrylamide coated capillary. Based on the developed focusing strategy, an ultrasensitive DNA assay was developed for quantitation of calf thymus dsDNA (from 0.02 to 2.14 pM). By the use of an excitation laser power as low as 1 mW, the detection limits of calf thymus dsDNA (3.5 kb) are 7.9 fM in concentration and 2.4×10?22 mol (150 molecules) in mass. We further demonstrate that the non‐gel sieving CE‐LIF analysis of DNA fragments can be enhanced by the same strategy. Since the presented strategy can be applied to uncoated and coated capillaries and does not require special device, it is also reasonable to extend to the applications in chip‐based CE DNA analysis.  相似文献   

2.
A novel, rapid and efficient separation method is described for the analysis of double stranded (ds) DNA fragments in the form of horizontal ultra-thin-layer agarose gel electrophoresis. This separation technique combines the multilane, high-throughput separation format of agarose slab gel electrophoresis with the excellent performance of capillary electrophoresis. The electrophoretic separation of the fluorophore (Cy5)-labeled dsDNA molecules were imaged in real time by a scanning laser-induced fluorescence/avalanche photodiode detection system. Effects of the gel concentration (Ferguson plot) and separation temperature (Arrhenius plot) on the migration characteristics of the DNA fragments are discussed. An important genotyping application is also shown by characterizing the polymorphic region (2× or 4×48 base pair repeats) of the dopamine D4 receptor gene (D4DR, exon III region) for ten individuals, using PCR technology with Cy5-labeled primers and ultra-thin-layer agarose gel electrophoresis.  相似文献   

3.
EvaGreen is a new DNA intercalating dye successfully used in quantitative real-time PCR. In the present work, we firstly apply EvaGreen to the analysis of dsDNA by CE with LIF detection. Comparisons of EvaGreen dye with the commonly used dyes SYBR Green I and SYBR Gold were preformed in dsDNA analysis by CE. The linear range of dsDNA using EvaGreen was slightly wider than that using SYBR Gold and SYBR Green I, and the detection limits of dsDNA were not significantly different for the three dyes. Good separations of dsDNA fragments were obtained using the three dyes. Reproducibility of migration time and the peak area of dsDNA fragments with EvaGreen were better than those for SYBR Green I and SYBR Gold. The RSD values were 0.24-0.27% for migration time and 3.45-7.59% for peak area within the same day, 1.35-1.63% for migration time and 6.72-12.05% for peak area for three days. Our data demonstrated that EvaGreen is well suited for the dsDNA analysis by CE with LIF detection.  相似文献   

4.
We are demonstrating a cost-effective multichannel capillary electrophoresis system for a high-efficiency double-stranded DNA (dsDNA) fragments analysis. This bench-type high-performance DNA analysis (HDA) system uses fluorescence-type detection with inexpensive solid-state light sources and nonmoving integrated emission collection micro-optics. DNA samples are analyzed simultaneously by using a multiple usage and disposable multicapillary cartridge, which contains integrated capillary channels, optical fibers and an integrated sieving gel reservoir. Using commercially available dsDNA size markers as indicators, the HDA system provides high resolving power in 7 min separations. The system can hold a total of 192 samples in two 96-well polymerase chain reaction (PCR) plates, which can be automatically analyzed within 2.5 h. This affordable system can be used in laboratories to replace slab gel electrophoresis for routine and high-throughput dsDNA analysis.  相似文献   

5.
Genetic mutations/polymorphisms analyses play a great role in genetic and medical research, and clinical diagnosis. Most conventional methods for genetic assay are based on slab gel electrophoresis that is both labor-intensive and time-consuming. Recently, capillary electrophoresis (CE) has been used for genetic analysis instead of conventional slab gel electrophoresis. This technique can be automated and is characterized by short analysis time, small sample and reagents requirements, and high separation efficiency. CE has been successfully applied for mutation detection involving human tumor suppressor genes, oncogenes and disease-causing genes, and has shown a great potential for genetic mutation/polymorphism screening of large numbers of clinical samples. In this article, an overview of the fundamental aspects of mutation/polymorphism assay methods in combination with CE is given and some key applications are summarized.  相似文献   

6.
DNA adducts are regarded as individual internal dosimeters for the exposure to chemical carcinogens. To date, the most sensitive method for DNA adduct analysis is the radioactive 32P-postlabeling method, which allows the detection of one adduct in 10(10) unmodified nucleotides in microg amounts of DNA. However, this technique suffers from disadvantages such as working with radioactive phosphorus and time-consuming chromatographic separation procedures. In addition, the simultaneous detection of adducts from different classes of carcinogens in a DNA sample is difficult. In order to overcome these drawbacks, we are developing a new detection method, comprising fluorescence labeling of DNA adducts, capillary electrophoretic (CE) separation, and on-line detection by monitoring laser-induced fluorescence (LIF). So far, we have evaluated the separation power and the detection limit of CE with fluorescently labeled standard compounds such as unmodified nucleotides or alkylated thymidines. For this purpose, we developed a universal method for labeling 5'-OH-mononucleosid-3'-dicyanoethyl-phosphates with fluorescent dyes based on the phosphoramidite technology for DNA synthesis. The separation of N3-methylated, N3-, O2- and O4-butylated thymidines from the unmodified nucleotide within a few minutes recommends CE-LIF as a powerful method for DNA adduct analysis.  相似文献   

7.
A voltage‐programming‐based capillary gel electrophoresis method with a laser‐induced fluorescence detector was developed for the fast and highly sensitive detection of DNA molecules related to angiotensin‐converting enzyme insertion/deletion polymorphism, which has been reported to influence predisposition to various diseases such as cardiovascular disease, high blood pressure, myocardial infarction, and Alzheimer's disease. Various voltage programs were investigated for fast detection of specific DNA molecules of angiotensin‐converting enzyme insertion/deletion polymorphism as a function of migration time and separation efficiency to establish the effect of voltage strength to resolution. Finally, the amplified products of the angiotensin‐converting enzyme insertion/deletion polymorphism (190 and 490 bp DNA) were analyzed in 3.2 min without losing resolution under optimum voltage programming conditions, which were at least 75 times faster than conventional slab gel electrophoresis. In addition, the capillary gel electrophoresis method also successfully applied to the analysis of real human blood samples, although no polymorphism genes were detected by slab gel electrophoresis. Consequently, the developed voltage‐programming capillary gel electrophoresis method with laser‐induced fluorescence detection is an effective, rapid analysis technique for highly sensitive detection of disease‐related specific DNA molecules.  相似文献   

8.
Here, we report the first utilization of Hadamard transform CE (HTCE), a high-sensitivity, multiplexed CE technique, with photolytic optical gating sample injection of caged fluorescent labels for the detection of biologically important amines. Previous implementations of HTCE have relied upon photobleaching optical gating sample injection of fluorescent dyes. Photolysis of caged fluorescent labels reduces the fluorescence background, providing marked enhancements in sensitivity compared to photobleaching. Application of fast Hadamard transform CE (fHTCE) for fluorescein-based dyes yields a ten-fold higher sensitivity for photolytic injections compared to photobleaching injections, due primarily to the reduced fluorescent background provided by caged fluorescent dyes. Detection limits as low as 5 pM (ca. 18 molecules per injection event) were obtained with on-column LIF detection using fHTCE in less than 25 s, with the capacity for continuous, online separations. Detection limits for glutamate and aspartate below 150 pM (1-2 amol/injection event) were obtained using photolytic sample injection, with separation efficiencies exceeding 1 x 10(6) plates/m and total multiplexed separation times as low as 8 s. These results strongly support the feasibility of this approach for high-sensitivity dynamic chemical monitoring applications.  相似文献   

9.
We have evaluated double-stranded DNA separations in microfluidic devices which were designed to couple a sample preconcentration step based on isotachophoresis (ITP) with a zone electrophoretic (ZE) separation step as a method to increase the concentration limit of detection in microfluidic devices. Developed at ACLARA BioSciences, these LabCard trade mark devices are plastic 32 channel chips, designed with a long sample injection channel segment to increase the sample loading. These chips were designed to allow stacking of the sample into a narrow band using discontinuous ITP buffers, and subsequent separation in the ZE mode in sieving polymer solutions. Compared to chip ZE, the sensitivity was increased by 40-fold and we showed baseline resolution of all fragments in the PhiX174/HaeIII DNA digest. The total analysis time was 3 min/sample, or less than 100 min per LabCard device. The resolution for multiplexed PCR samples was the same as obtained in chip ZE. The limit of detection was 9 fg/microL of DNA in 0.1xpolymerase chain reaction (PCR) buffers using confocal fluorescence detection following 488 nm laser excitation with thiazole orange as the fluorescent intercalating dye.  相似文献   

10.
Single-molecule immunoassay and DNA diagnosis   总被引:1,自引:0,他引:1  
Many assays relevant to disease diagnosis are based on electrophoresis, where the migration velocity is used for distinguishing molecules of different size or charge. However, standard gel electrophoresis is not only slow but also insensitive. We describe a single-molecule imaging procedure to measure the electrophoretic mobilities of up to 100000 distinct molecules every second. The results correlate well with capillary electrophoresis (CE) experiments and afford confident discrimination between normal (16.5 kbp) and abnormal (6.1 kbp) mitochondrial DNA fragments, or beta-phycoerythrin-labeled digoxigenin (BP-D) and its immunocomplex (anti-D-BP-D). This demonstrates that virtually all electrophoresis diagnostic protocols from slab gels to CE should be adaptable to single-molecule detection. This opens up the prossibility of screening single copies of DNA or proteins within single biological cells for disease markers without performing polymerase chain reaction (PCR) or other biological amplification.  相似文献   

11.
《Electrophoresis》2017,38(13-14):1764-1770
Gel electrophoresis is one of the most applied and standardized tools for separation and analysis of macromolecules and their fragments in academic research and in industry. In this work we present a novel approach for conducting on‐demand electrophoretic separations of DNA molecules in open microfluidic (OM) systems on planar polymer substrates. The approach combines advantages of slab gel, capillary‐ and chip‐based methods offering low consumable costs (<0.1$) circumventing cost‐intensive microfluidic chip fabrication, short process times (5 min per analysis) and high sensitivity (4 ng/μL dsDNA) combined with reasonable resolution (17 bases). The open microfluidic separation system comprises two opposing reservoirs of 2–4 μL in volume, a semi‐contact written gel line acting as separation channel interconnecting the reservoirs and sample injected into the line via non‐contact droplet dispensing and thus enabling the precise control of the injection plug and sample concentration. Evaporation is prevented by covering aqueous structures with PCR‐grade mineral oil while maintaining surface temperature at 15°C. The liquid gel line exhibits a semi‐circular cross section of adaptable width (∼200–600 μm) and height (∼30–80 μm) as well as a typical length of 15–55 mm. Layout of such liquid structures is adaptable on‐demand not requiring time consuming and repetitive fabrication steps. The approach was successfully demonstrated by the separation of a standard label‐free DNA ladder (100–1000 bp) at 100 V/cm via in‐line staining and laser induced fluorescent end‐point detection using an automated prototype.  相似文献   

12.
Sieben VJ  Backhouse CJ 《Electrophoresis》2005,26(24):4729-4742
When performing genetic analysis on microfluidic systems, labeling the sample DNA for detection is a critical preparation step. Labeling procedures often involve fluorescently tagged primers and PCRs, which lengthen experimental run times and introduce higher levels of complexity, increasing the overall cost per analysis. Alternatively, on-chip labeling techniques based on intercalating dyes permit rapid labeling of DNA fragments. However, as noted in the literature, the stochastic nature of dye-DNA complex formation hinders the native electrophoretic migration of DNA fragments, degrading the separation resolution. In this study, we present a novel method of controllably labeling DNA fragments at the end of the electrophoretic separation channel in a glass microfluidic chip. Permitting the DNA to separate and labeling just before detection, achieves the rapid labeling associated with intercalators while maintaining the high resolution of native DNA separations. Our analyses are completed in minutes, rather than the hours typical of sample prelabeling. We demonstrate an electrophoretic microchip-based intercalator labeling technique that achieves higher resolution performance than reported in the literature to date.  相似文献   

13.
A method of combining capillary electrophoresis (CE) using a surfactant-modified capillary with matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is described for protein analysis. The CE-MALDI-MS coupling is based on CE fraction collection of nanoliter volume samples in less than 5 microl of dilute acid. This offline coupling does not require any special instrumentation and can be readily performed with commercial instruments. Protein adsorption during CE separation is prevented by coating the capillary with the surfactant didodecyldimethylammonium bromide. This surfactant binds strongly with the capillary wall, hence it does not desorb significantly to interfere with subsequent MALDI-MS analysis. It is shown that the use of a dilute acid for CE fraction collection is advantageous in lowering the detection limit of MALDI-MS compared to using an electrophoretic buffer. The detection limit for proteins such as cytochrome c is 23 fmol injected for CE, or 1.2 fmol spotted for MALDI-MS. This sensitivity is comparable to alternative CE-MALDI-MS coupling techniques using direct CE sample deposition on the MALDI target. In addition, the fraction collection approach has the advantage of allowing multiple reactions to be carried out on the fractioned sample. These reactions are very important in protein identification and structure analysis.  相似文献   

14.
This paper outlines the first use of SYTOX Orange, SYTO 82 and SYTO 25 nucleic acid stains for on-column staining of double-stranded DNA (dsDNA) fragments separated by capillary electrophoresis (CE). Low-viscosity, replaceable poly(vinylpyrrolidone) (PVP) polymer solution was used as the sieving matrix on an uncoated fused-silica capillary. The effects of PVP concentration, electric field strength, and incorporated nucleic acid stain concentrations on separation efficiency were examined for a wide range of DNA fragment sizes. Our study was focused on using nucleic acid stains efficiently excitable at a wavelength of 532 nm. Among the five tested nucleic acid stains, SYTOX Orange stain was shown to have the best sensitivity for dsDNA detection by CE. About a 500-fold lower detection limit was obtained compared to commonly used ethidium bromide and propidium iodide. SYTOX Orange stain also provided a wide linear dynamic range for direct DNA quantitation with on-line CE detection. Use of SYTOX Orange stain can greatly improve the measurement of DNA fragments by CE, which will enable an expanded set of applications in genomics and diagnostics.  相似文献   

15.
Liu T  Liang D  Song L  Nace VM  Chu B 《Electrophoresis》2001,22(3):449-458
A mixture of two polyoxybutylene-polyoxyethylene-polyoxybutylene (BEB) triblock copolymers (B6E46B6 and B10E271B10, respectively) was used as a new separation medium for separating double-stranded DNA (dsDNA) fragments by capillary electrophoresis (CE). The two block copolymer mixtures were designed to form mixed flower-like micelles in dilute solution and a homogeneous gel-like open-network with hydrophobic clusters as cross-linking points at higher polymer concentrations. Being a polyoxyalkylene block copolymer gel, the separation medium has some special advantages, including the temperature-dependent sol-gel transition that makes sample injection easy, and the self-coating of the inner capillary wall that makes experimental procedures simple and reproducible. Furthermore, it can shorten the elution time and further improve the separation resolution, especially for small dsDNA fragments, when compared with EPE-type separation media, e.g., F127 (E99P69E99, with P being polyoxypropylene) block copolymer gels formed by the closed packing of spherical micelles. Single base pair resolution can be achieved by using the new separation medium for dsDNA fragments up to over 100 base pairs.  相似文献   

16.
Capillary electrophoresis (CE) is a new, high-resolution tool for the analysis of DNA restriction fragments and DNA amplified by the polymerase chain reaction (PCR). By combining many of the principles of traditional slab gel methods in a capillary format, it is possible to perform molecular size determinations of human and plant PCR amplification products and DNA restriction fragments. DNA restriction fragments and PCR products were analyzed by dynamic sieving electrophoresis (DSE) and capillary gel electrophoresis (CGE). As part of this study, sample preparation procedures, injection modes, and the use of molecular mass markers were evaluated. Optimum separations were performed using the uPage-3 (3% T, 3% C) CGE columns with UV detection at 260 nm. Membrane dialysis and ultrafiltration/centrifugation proved to be nearly equivalent methods of sample preparation. Reproducibility studies demonstrated that blunt-ended, non-phosphorylated markers (specifically allele generated markers) provide the most accurate calibration for PCR product analysis. This study demonstrates that CE offers a high-speed, high-resolution analytical method for accurately determining molecular size and/or allelic type as compared with traditional methodologies.  相似文献   

17.
Capillary electrophoresis of proteins 2005-2007   总被引:1,自引:0,他引:1  
Dolník V 《Electrophoresis》2008,29(1):143-156
This review article with 239 references describes recent developments in capillary electrophoresis of proteins, and covers the two years since the previous review (V. Dolník, Electrophoresis 2006, 27, 126-141) through spring 2007. It includes topics related to CE of proteins, such as sample pretreatment, wall coatings, improving separation, various forms of detection, and special electrophoretic techniques including ACE, CIEF, capillary ITP, and CEC. The paper describes applications of CE to analysis of proteins in real-world samples including human body fluids, food and agricultural samples, protein pharmaceuticals and recombinant protein preparations.  相似文献   

18.
A novel method is presented to detect DNA fragments separated by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection using inverse-flow derivatization. In electrophoresis, the intercalating dye, thiazol orange was only added to the separation buffer at the positive polarity. The negatively charged DNA fragments migrated from the negative polarity to the positive polarity, while the positively charged dye migrated in the opposite direction. When DNA fragments met with dye ions, the DNA–dye complexes were formed. The complexes continued migrating to the positive end, due to their net negative charges. When the complexes passed through the detection window, the fluorescent signals were generated. Importantly, DNA fragments migrated as their native state before DNA–dye complexes were formed. This procedure was used to detect double stranded DNA (dsDNA) and single stranded DNA (ssDNA) fragments, and polymerase chain reaction (PCR) products. The excellent resolution and good reproducibility of DNA fragments were achieved in non-gel sieving medium. This procedure may be useful in genetic mutation/polymorphism detections.  相似文献   

19.
20.
The unique bread-making properties of wheat are closely correlated with composition and quantity of high-molecular-mass (HMW) glutenin subunits encoded by the Glu-1 genes. We report the development of a multiplex polymerase chain reaction (PCR) method to identify bread wheat genotypes carrying HMW glutenin allele composition of Glu-1 complex loci (Glu-A1, Glu-B1 and Glu-D1) by capillary electrophoresis(CE) with laser-induced fluorescence (LIF) detection. Two triplex primer sets of HMW glutenin subunit genes were examined. An automated and rapid CE-LIF technique is helpful in the multiplex PCR optimization process. Two fluorescent intercalating dyes (EnhanCE, and YO-PRO-1) are compared for detection of DNA fragments. Amplified DNA fragments of HMW glutenin Glu-1 genes were well separated both by agarose slab-gel electrophoresis and CE, and revealed minor differences between the sequences of 1Ax2*, 1Axnull, 1Bx6, 1Bx7, 1Bx17 and 1Dx5 genes. Moreover, CE technique requires samples of smaller volumes in comparison to slab-gel electrophoresis, and data can be obtained in less than 20 min. There was a very high concordance in the assessment of the molecular size of PCR-generated DNA markers. Fast and accurate identification of molecular markers of Glu-1 genes by CE-LIF can be an efficient alternative to standard procedure separation for early selection of useful wheat genotypes with good bread-making quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号