首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Four pyridinecarboxamide iron dicyanide building blocks and one Mn(III) compound have been employed to assemble cyanide-bridged heterometallic complexes, resulting in a series of trinuclear cyanide-bridged FeIII–MnII complexes: {[Mn(DMF)2 (MeOH)2][Fe(bpb)(CN)2]2}·2DMF (1), {[Mn(MeOH)4][Fe(bpmb)(CN)2]2}·2MeOH·2H2O (2), {[Mn(MeOH)4][Fe(bpdmb)(CN)2]2}·2MeOH·2H2O (3) and {[Mn(MeOH)4][Fe(bpClb)(CN)2]2}·4MeOH (4) (bpb2− = 1,2-bis(pyridine-2-carboxamido)benzenate, bpmb2− = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, bpdmb2− = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate, bpClb2− = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate). Single-crystal X-ray diffraction analysis shows their similar sandwich-like structures, in which the two cyanide-containing building blocks act as monodentate ligands through one of their two cyanide groups to coordinate the Mn(II) center. Investigation of the magnetic properties of these complexes reveals antiferromagnetic coupling between the neighboring Fe(III) and Mn(II) centers through the bridging cyanide group. A best fit to the magnetic susceptibilities of complexes 1 and 3 gave the magnetic coupling constants J = −1.59(2) and −1.32(4) cm−1, respectively.  相似文献   

2.

Abstract  

Four complexes of 3,3-diphenylpropanoate (L) and 4,4′-bipyridine as auxiliary bridging ligands were synthesized and characterized, namely [Zn(L)2(4bpy)(EtOH)2] (1), [Co(L)2(4bpy)(EtOH)2] (2), [Ni(L)2(4bpy)(EtOH)2] (3), and [Cu(L)2(4bpy)(H2O)] (4) (4bpy = 4,4′-bipyridine). X-ray single-crystal diffraction analyses show that complexes 14 all take one-dimensional (1D) fishbone-like structures incorporating bridging 4bpy ligands. The complexes show different supramolecular frameworks interlinked via intermolecular hydrogen bonds, π···π stacking, and/or C–H···π supramolecular interactions. Complex 3 only has a simple one-dimensional fishbone-like chain, whereas complexes 1 and 2 show two-dimensional supramolecular structures by interchain C–H···O hydrogen bonds. Complex 4 is assembled into two-dimensional layers and then an overall three-dimensional framework by a combination of interchain O–H···O hydrogen bonds and C–H···π supramolecular interactions. The luminescent properties of the ligands and their complexes were investigated.  相似文献   

3.
New Pd(II) complexes with 1-allyl-3-(2-pyridyl)thiourea (APTU) of the formulas [Pd(C9H11N3S)Cl2] (I) and [Pd(C9H11N3S)2]Cl2 (II) were obtained and examined by UV-Vis, IR, and 1H NMR spectroscopy. The conditions for the complexation reactions were optimized. The instability constants and molar absorption coefficients of these complexes were calculated. Comparison of the characteristic bands in the UV-Vis and IR spectra of the complexes and free APTU revealed that the ligand in both complexes is coordinated to the metal atom in the thione form in the bidentate chelating mode through the S atom of the thiourea group and the pyridine N atom. In the UV-Vis spectra of the complexes, the charge transfer bands (π → π* Py) and n → π* (C=NPy), (C=S) experience hypsochromic shifts by 450–470 cm−1 caused by the coordination of APTU to the metal ion, which gives rise to ligand-metal charge-transfer bands (C=NPy → Pd, n → π* (C=S)) and (SPd). The protons in the 6-, 4-, and 3-positions of the pyridine ring and the thiourea NH proton in the chelate ring are most sensitive to the complexation.  相似文献   

4.
Two new blue luminescent Zn(II) complexes, [ZnL2(H2O)]Cl2 · H2O (1) and [ZnL2Cl][ZnLCl2] · NO3 (2) (L = 2-aminomethylbenzimidazole) have been synthesized and characterized spectroscopically and crystallographically. The structure of complex (1) can be described as a square pyramid. In the complex (2), there are two units [ZnLCl2] (a), and [ZnL2Cl]+ (b), which have a distorted tetrahedral geometry and a slightly distorted trigonal bipyramidal coordination geometry, respectively. In these complexes, significant multiple inter- and intra-molecular hydrogen bonding and π–π stacking interactions are shown. These contacts lead to aggregation and supramolecular assembly of complexes (1) and (2) into 3D and 2D frameworks, respectively. Fluorescent analysis in the dilute DMF solution and solid state shows that both complexes exhibit intense emission in blue region. They display high blue luminescence quantum efficiency due to a metal-to-ligand charge transfer (MLCT) and have a bathochromic shift of the emission energy compared with the free ligand L. The emission intensity of complex (2) is higher than that of complex (1).  相似文献   

5.
Abstract  To explore the influence of the anthracene ring skeleton, with a large conjugated π-system, on the structures and properties of its complexes, two MnII complexes with anthracene-9-carboxylate ligand were synthesized and structurally characterized: {[Mn(L)2(H2O)2](H2O)} (1) and [Mn2(L)4(phen)2(μ-H2O)](CH3OH) (2) (L = anthracene-9-carboxylate and phen = 1,10-phenanthroline). Complex (1) has a one-dimensional (1D) chain structure that is further assembled to form a two-dimensional (2D) sheet, and then an overall three-dimensional (3D) network by π···π stacking and/or C–H···π interactions. Complex (2) makes a dinuclear structure by incorporating the chelating phen ligand, which is further interlinked via inter-molecular π···π stacking and C–H···π interactions to generate a higher-dimensional supramolecular network along the different crystallographic directions. The results reveal that the bulky anthracene ring skeleton in L, by virtue of intra- and/or inter-molecular π···π stacking and C–H···π interactions, plays an important role in the formation of complexes (1) and (2). The magnetic properties of (1) and (2) were further investigated. As expected, the very long inter-metallic separations result in weak magnetic coupling, with the corresponding coupling constant values of J = −10 cm−1 for (1) and J = −2.46 cm−1 for (2). Graphical abstract  The constructions of two new MnII complexes comprising 1D chain (1) and dinuclear subunit (2) structures have been successfully achieved by using a bulky anthracene-9-carboxylic acid (HL), together with incorporating the chelating 1,10-phenanthroline as a co-ligand for (2). The result reveals that the bulky anthracene ring skeleton of HL, by virtue of intra- and/or inter-molecular π···π stacking and C–H···π interactions, plays an important role in the formation of the supramolecular architectures of (1) and (2). Moreover, magnetic properties of the complexes have been investigated.   相似文献   

6.

Abstract  

Three Mn(II) coordination polymers based on 1,10-phenanthroline derivatives and mono-, bi-, or trimetallic cores, namely [Mn(L1)(HL1)(Cl)] (1), [Mn(1,4-ndc)(HL1)] (2), and [Mn3(cis-chdc)2(trans-chdc)(L2)2] (3), where HL1 = 1-(1H-imidazo[4,5-f][1, 10]phenanthrolin-2-yl)naphthalen-2-ol, L2 = 2-(4-fluorophenyl)-1H-imidazo[4,5-f][1, 10]phenanthroline, 1,4-ndc = 1,4- naphthalenedicarboxylate and chdc = 1,4-cyclohexanedicarboxylate, have been synthesized under hydrothermal conditions. Their structures have been determined by single crystal X-ray diffraction analyses and further characterized by physico-chemical and spectroscopic methods. Compound 1 shows a one-dimensional zigzag chain structure. The neighboring chains are extended into a two-dimensional 3-connected (6,3) network by π–π interactions. Interestingly, two (6,3) networks are interpenetrated in a twofold mode. Compound 2 displays a 2D 4-connected (4,4) network structure based on dinuclear Mn(II) units. Adjacent networks are further connected through π–π interactions to form a three-dimensional supramolecular architecture. Compound 3 shows a 2D 4-connected (4,4) network structure based on trinuclear Mn(II) units. Further, the π–π interactions among adjacent networks resulted in a 3D supramolecular architecture for 3.  相似文献   

7.
将配体3-((5-(3-吡啶基)-2-(1,3,4-噁二唑基))硫代)-2,4-戊二酮(HL)与Cu(OAc)_2·H_2O、Zn(OAc)_2·2H_2O和Mn(OAc)_2·4H_2O分别进行配位反应,得到3个配位聚合物{[Cu_2(L)_4]·CHCl_3}_n(1)、{[Zn(L)_2]·4CHCl_3}_n(2)和{[Mn(L)_2]·4CHCl_3}_n(3),并通过元素分析、红外光谱、粉末X射线衍射、单晶X射线衍射等对配合物的结构进行了表征。在固体状态下,配位聚合物1形成1D螺旋链状结构,配位聚合物2和3形成2D网状结构。  相似文献   

8.
Two binuclear cadmium(II) iodide compounds of the types [Cd2(L1)(I)4] (1) and [(L2)Cd(μ-I)CdI3] (2) [L1 = N,N′-(bis(pyridine-2-yl)formylidene)triethylenetetramine and L2 = tris(2-aminoethyl)amine] are synthesized and characterized. X-ray structural study shows that each cadmium(II) in 1 has a distorted square pyramidal geometry with a CdN3I2 chromophore and that L1 behaves as a binucleating bis(tridentate) ligand bridging the metal centers with iodides remaining as terminals. In 2, one cadmium(II) adopts a distorted tetrahedral geometry with a CdI4 chromophore surrounded by four iodides, while the other has a distorted trigonal bipyramidal environment with CdN4I chromophore bound by four N atoms of L2 and one bridging iodide. Weak C–H···π interactions in 1 result in an infinite 1D chain; however, such weak non-covalent interactions are absent in 2. The Schiff base complex, 1, shows high-energy intraligand 1(π–π*) fluorescence in DMF solution at room temperature, whereas compound 2 containing tripodal amine is fluorescent-inactive.  相似文献   

9.

Abstract  

Three copper(II), one zinc(II), and one ferrous(II) complexes having 3-bromo or 3,8-dibromo-1,10-phenanthroline ligand with different metal/ligand molar ratios, formulated as [Cu(3-bromo-phen)(ClO4)(C3H7NO)2(H2O)](ClO4) (1), [Cu(3,8-dibromo-phen)(ClO4)(C3H7NO)2(H2O)](ClO4) (2), [Cu(3,8-dibromo-phen)(ClO4)(H2O)3](ClO4)(H2O)3 (3), [Zn(3,8-dibromo-phen)2(H2O)2](ClO4)2(H2O)2 (4), and [Fe(3,8-dibromo-phen)3](ClO4)2(H2O)(CH4O)(C3H6O)2 (5) (phen = 1,10-phenanthroline), have been synthesized and characterized in this paper. X-ray single-crystal diffraction studies reveal the different crystallographic symmetry and packing fashions between neighboring phen rings in 1:1 Cu(II) complexes 13 due to the alteration of bromo substituent 1,10-phenanthroline ligands and coordinated or free solvent molecules. Additionally, in 1:2 Zn(II) and 1:3 Fe(II) complexes 4 and 5, continuous π–π stacking and alternating π–π and dimeric p–π stacking are found.  相似文献   

10.
The thiosemicarbazide and hydrazide Cu(II) complexes, [Cu3L21(py)4Cl2] (1), [Cu(HL2)py] (2) and [Cu(HL3)py] (3), (H2L1 = 1-picolinoylthiosemicarbazide, H3L2 = N′-(2-hydroxybenzylidene)-3-hydroxy-2-naphthohydrazide, H3L3 = 2-hydroxy-N′-((2-hydroxy-naphthalen-1-yl)methylene)benzohydrazide) have been prepared and characterized through physicochemical and spectroscopic methods as well as X-ray crystallography. Complex 1 has a centrosymmetric structure with –N–N– bridged Cu3 skeleton. Neighboring molecules are linked into a 3D supermolecular framework by π–π stacking interactions, N–H···Cl and C–H···Cl hydrogen bonds. Complexes 2 and 3 have similar planar structures but different dimers formed by concomitant Cu···N and Cu···O interactions, respectively. Solvent accessible voids with a volume of 391 ?3 are included in the structure of complex 2, indicating that this complex is a potential host candidate. Thermogravimetric analysis shows that the three complexes are stable up to 100 °C.  相似文献   

11.
A Schiff base ligand containing thiocarbamide group of 4-phenyl-1-(4-methoxyl-1-phenylethylidene)thiosemicarbazide (HL) and its three mononuclear metal complexes of ZnL2 (1), NiL2 (2), and CuL2 (3) have been synthesized. Elemental analysis, IR, and X-ray single crystal diffraction characterizations for the ligand and the three complexes have been carried out. In the three complexes, the central metallic ions of Zn2+, Ni2+, and Cu2+ coordinate with two deprotonated ligands of L, respectively. In 1, Zn2+ ion adopts a distorted tetrahedral geometry, while in 2 and 3, both the Ni2+ and Cu2+ ions possess distorted square planar configurations. For the four compounds, UV–Vis spectra have been measured and DFT calculations at B3LYP/LANL2DZ level of theory prove that the electronic spectra of HL and 1 are corresponding with electronic transitions of n → π* and π → π* in the ligand itself and the electronic spectra of 2 and 3 are attributed to intraligand electronic transitions as well as dd electronic transitions. Electrochemical investigations reveal that the different metal–ligand interactions have changed the peak shapes and peak locations, which are corresponding with the DFT-B3LYP/LANL2DZ calculational results. Fluorescence spectra measurements indicate that the ligand emits purple fluorescence and the complex 1 emits stronger blue fluorescence, while the complexes 2 and 3 quench fluorescence. The thermal analyses result show that the three complexes undergo two similar decomposition processes because of their similar geometric configurations.  相似文献   

12.
Three new reduced amino-acid Schiff base complexes, [Co(HL)2(H2O)2] · 4H2O (1), [Cu(HL)2(H2O)2] · 2H2O (2), and [Cd(HL)2(H2O)3] · 2H2O (3), where H2L is the reduced Schiff-base ligand derived from the condensation of N-(4-hydroxybenzaldehyde) with L-glycine, have been synthesized and characterized by physico-chemical and spectroscopic methods. In these complexes, the two bidentate monoanionic Schiff base ligands coordinate the metal center through the secondary amine N atom and the carboxylate O atom. Water ligands complete a distorted octahedral (1, 2) or a pentagonal bipyramidal coordination geometry (3) around each metal center. The binding interactions of the complexes with CT-DNA have been investigated by UV–visible spectrophotometry and fluorescence quenching methods. The results show that these complexes bind to CT-DNA with an intercalative mode. In addition, DNA cleavage experiments have been also investigated by agarose gel electrophoresis. Complexes 13 show oxidative DNA cleavage activity in the presence of H2O2/sodium ascorbate and the reactive oxygen species responsible for the DNA cleavage is most likely singlet oxygen. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.

Abstract  

A mononuclear complex [CoL2Cl2]·3.5H2O (L = 2-[(2,2-diphenylethylimino)methyl]pyridine-1-oxide) has been synthesized and characterized by X-ray structure analysis. The crystal structure confirms the formation of an interesting porous framework with channel diameters of about 8 ? through weak C–H···π and C–H···Cl interactions. The magnetic properties of this complex have also been studied, and the susceptibility and magnetization data were analyzed in terms of the spin Hamiltonian formalism. They confirm substantial zero-field splitting, D/hc = 75 cm−1.  相似文献   

14.
Wang  Cong  Wu  Yancong  Qu  Yao  Zhao  Kun  Xu  Jianhua  Xia  Xinzhao  Wu  Huilu 《Transition Metal Chemistry》2020,45(8):523-529

Three new metal complexes, namely: [Mn(AIDB)Cl2]·DMF (1), [Zn(AIDB)Br2]·CH3OH (2) and [Co(AIDB)Cl2]·CH3OH (3) having a ligand bis(benzimidazol-2-ylmethyl)allylamine (AIDB), have been synthesized in high yields and characterized by elemental analyses, molar conductivities, IR, UV–Vis spectra and single-crystal X-ray diffraction. The structural analysis revealed that all the three complexes 13 have five-coordinated trigonal bipyramid geometry where the degree of distorting is 1>3>2. In vitro antioxidant activity assay demonstrates that the complexes 1 and 3 display high scavenging activity against hydroxyl (OH·) and superoxide (O2−·) radicals.

  相似文献   

15.
Two new salts, [BzTPP]2[Cu(mnt)2] (1) and [4NO2BzTPP]2[Cu(mnt)2] (2) (BzTPP+ = benzyltriphenylphosphonium and mnt2− = maleonitriledithiolate) have been prepared and characterized by elemental analyses, UV, IR, molar conductivity and single-crystal X-ray diffraction. The single-crystal structure analysis shows that 1 crystallizes in the monoclinic space group P21/n, while 2 crystallizes in the triclinic space group P−1. The effects of weak intramolecular interactions such as C–H···O, C–H···S, C–H···N, C–H···Cu hydrogen bonds and p···π, π···π stacking interactions in the solids generate a 3D network structure. It is noted that the change in the molecular topology of the counteraction when the 4-substituted group in the benzyl ring is changed from H to NO2 results in differences in the crystal system, space group, weak interactions and the stacking mode of the cations and anions of 1 and 2. The magnetic susceptibilities of these salts measured in the temperature range 2.0 to 300 K show weak ferromagnetic coupling features with θ = 2.05 × 10−2 K for 1 and 5.13 × 10−3 K for 2.  相似文献   

16.
Abstract  A 1-D hybrid copper(I) halides, [(phen)Cu3I3] n (phen = 1,10-phenanthroline)(1) with novel D6R (double six-membered rings) Cu6I6 cores, was synthesized by solvothermal reaction and characterized by single-crystal X-ray diffraction. In 1, nitrogen atoms from phen replace two I of CuI4 tetrahedron to give distorted tetrahedral geometries (CuI2N2), then CuI2N2 tetrahedron shares corners via μ3-I to generate an extended 1-D zigzag chain. Two zigzag chains combines with one 1-D (Cu4I4) n chain containing D6R cores via μ3-I-Cu (from cores) bonds to form the infinite 1-D ribbonlike polymer along the a-axis. Furthermore, the title compound is stabilized by conspicuous C–H···I hydrogen bonds, π–π and d10–d10 metallic interactions. Experimental and theoretical optical property investigation indicates that 1 possesses semiconductor property. DFT calculation was executed to probe the electronic structure of 1. To our interest, phen act as a property control species with its π* electrons appear in the forbidden band. Graphical Abstract  A hybrid copper(I) halides [(phen)Cu3I3] n containing D6R cores was structurally determined, which was stabilized by conspicuous C–H···I hydrogen bonds, π–π and d10–d10 metallic interactions and possesses semiconductor property. DFT calculation indicate phen act as a property control species with its π* electrons appear in the forbidden band. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
A new ligand, 3-methyl-4-(p-bromophenyl)-5-(2-pyridyl)-1,2,4-triazole (L) and its complexes, trans-[CuL2(ClO4)2] (1) and cis-[CoL2(H2O)2](ClO4)2·H2O·CH3OH (2), have been synthesized and characterized by UV, IR, electrospray ionization mass spectrum, elemental analyses, and single-crystal X-ray diffraction methods. In the structure, two L ligands are stabilized by intermolecular π···π interactions between the triazole rings. In the complexes, each L ligand adopts a chelating bidentate mode through N atom of pyridyl group and one N atom of the triazole. Both complexes have a similar distorted octahedral [MN4O2] core (M = Cu2+ and Co2+) with two ClO4 ions in the trans position in 1 but two H2O molecules in the cis arrangement in 2.  相似文献   

18.
Derivative of 8-hydroxyquinoline i.e. Clioquinol is well known for its antibiotic properties, drug design and coordinating ability towards metal ion such as Copper(II). The structure of mixed ligand complexes has been investigated using spectral, elemental and thermal analysis. In vitro anti microbial activity against four bacterial species were performed i.e. Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Bacillus substilis and found that synthesized complexes (15–37 mm) were found to be significant potent compared to standard drugs (clioquinol i.e. 10–26 mm), parental ligands and metal salts employed for complexation. The kinetic parameters such as order of reaction (n = 0.96–1.49), and the energy of activation (E a = 3.065–142.9 kJ mol−1), have been calculated using Freeman–Carroll method. The range found for the pre-exponential factor (A), the activation entropy (S* = −91.03 to−102.6 JK−1 mol−1), the activation enthalpy (H* = 0.380–135.15 kJ mol−1), and the free energy (G* = 33.52–222.4 kJ mol−1) of activation reveals that the complexes are more stable. Order of stability of complexes were found to be [Cu(A4)(CQ)OH] · 4H2O > [Cu(A3)(CQ)OH] · 5H2O > [Cu(A1)(CQ)OH] · H2O > [Cu(A2)(CQ)OH] · 3H2O  相似文献   

19.
Three novel coordination polymers, namely, [Mn(ndc)(bpy)] n  · n(H2O) (1), [Mn(ndc)(phen)] n (2), and [Mn3(ndc)3(bpy)2] n (3) (H2ndc = 2,6-naphthalenedicarboxylic acid, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline) have been hydrothermally synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. Complexes 13 exhibit three-dimensional metal-organic frameworks (MOFs); 1 and 2 are assemblies of the same secondary building units (SBUs), linear infinite chains {Mn(CO2)2} n , forming one-dimensional channel, while complex 3 is constructed by trinuclear clusters {Mn3(CO2)6} SBUs. Magnetic properties of complexes 1 and 3 are also discussed with respect to the bridging mode of the carboxylate groups.  相似文献   

20.
The reactions of Zn(II), Mn(II), and Ni(II) acetates with 1-picolinoyl-4-phenyl-3-thiosemicarbazide (Hppts) yielded [Zn(ppts)2]·CHCl3 (3), [Mn(ppts)2]·THF (4), and [Ni(ppts)2]·THF (5), respectively, but HgCl2 gave a cyclized product N-phenyl-5-(pyridin-2-yl)-1,3,4-oxadiazole-2-yl-amine (2). The treatment of Hppts with conc. H2SO4 formed N-phenyl-5-(pyridin-2-yl)-1,3,4-thiadiazole-2-yl-amine (1). Hppts is a nonfluorescent material, but 3, 4 and the cyclized products 1,3,4-oxadiazole/1,3,4-thiadiazole are fluorescent. The cyclized ligand N-phenyl-5-(pyridin-2-yl)-1,3,4-thiadiazole-2-amine (1) formed [Zn(2-Hppt)2(OAc)2] (6) and [Cd2(2-Hppt)2(OAc)2(μ-OAc)2] (7) in which Cd(II) has a binuclear acetate-bridged seven coordinate pentagonal bipyramidal geometry. Complex 7 is also a fluorescent material with maximum emission at 425 nm at an excitation wavelength of 254 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号