首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The separation/identification of 25 amino acids as their o-phthaldialdehyde-3-mercaptopropionic acid (OPA/MPA) and o-phthaldialdehyde-N-acetyl-L-cysteine (OPA/NAC) derivatives have been optimized [paying particular attention to those amino acids which elute with more than one derivative (glycine, histidine, gamma-aminobutyric acid, beta-alanine, ornithine, lysine) and that are expected to be present in apples in their free form]. Optimum separation conditions are reported on six reversed-phase columns: Nucleosil 3 and 5 microm, 150(+20 guard)x4.0 mm; Gromsil 3 microm, 150(+10 guard)x4.0 mm; Hypersil 5 microm, 150(+20 guard)x4.0 mm and 200(+20 guard)x4.0 mm; and Hypersil 3 microm, 150(+20 guard)x4.0 mm. Elutions were followed, simultaneously, with photodiode array and fluorescence detectors connected in line. Optimization studies carried out in model solutions as a function of temperature (30-55 degrees C) and eluent flow-rate (0.8-2.5 mL/min) demonstrated that optimum resolutions are obtained with the highest flow-rate applicable (remaining on the safe side with a column pressure of < 3500 p.s.i.; 1 p.s.i.=6894.76 Pa) in the temperature range 30-50 degrees C. Twenty-five amino acids, eluting in 31 separate, characteristic derivatives, were determined on all six columns (the main component, asparagine, present in overwhelming excess, together with the minor constituents glutamine, beta-alanine, gamma-aminobutyric acid, homoserine, and homoarginine). Optimum conditions in the case of both derivatives were obtained on the same type of column (Hypersil, 5 microm), as follows: for the OPA/MPA amino acids with programmed flow-rate [1.3-2.3 ml/min; column, 200(+20 guard)x4 mm], at 50 degrees C, while, for the OPA/NAC amino acids at 2.1 ml/min flow rate, at 30 degrees C [column, 150(+20 guard)x4 mm], with 40 and 37 min run times, including equilibration. Responses of the corresponding amino acids proved to be independent of the column used; reproducibility in the concentration range 6-12,000 pmol, related to the injected amount of amino acids, was <3.4% RSD (average relative standard deviation percentage). The utility of the protocol was demonstrated in the quantitation of the free amino acid content of five apple varieties (Jonagored, Idared, Jonica, Florina, Freedom) on various harvesting dates and after different storage times. Derivatization of the apple pulp was performed with filtered samples, applying any special isolation processes.  相似文献   

2.
It is becoming increasingly apparent that soil amino acids are a principal source of nitrogen (N) for certain plants, and especially those of N-limited environments. This study of temperate upland grasslands used glycine-2-(13)C-(15)N and ((15)NH4)(2)SO(4) labelling techniques to test the hypothesis that plant species which dominate 'unimproved' semi-natural grasslands (Festuca-Agrostis-Galium) are able to utilise amino acid N for growth, whereas those plants which dominate 'improved' grasslands (Lolium-Cynosurus), that receive regular applications of inorganic fertiliser, use inorganic N forms as their main N source. Data from field experiments confirmed that 'free' amino acids were more abundant in 'unimproved' than 'improved' grassland and that glycine was the dominant amino acid type (up to 42% of total). Secondly, the injection of representative amounts of glycine-2-(13)C-(15)N (4.76 and 42.86 mM) into intact soil cores from the two grassland types provided evidence of direct uptake of glycine by plants, with both (15)N and (13)C being detected in plant material of both grasslands. Finally, a microcosm experiment demonstrated no preferential uptake of amino acid N by the grasses which dominate the grassland types, namely Holcus lanatus, Festuca rubra, Agrostis capillaris from the 'unimproved' grassland, and Lolium perenne from the 'improved' grassland. Again, both (13)C and (15)N were detected in all grass species suggesting uptake of intact glycine by these plants.  相似文献   

3.
The separation and identification possibilities of 27 PTC-amino acids (with particular attention to those present in apples in free forms), are reported on seven RP columns such as, Nucleosil, 3 and 5 microns: 150(+20 guard) x 4.0 mm; Gromsil 3 microns; 150(+10 guard) x 4.0 mm; Hypersil 5 microns: 130(+20 guard) x 4.0 mm, 150(+20 guard) x 4.0 mm and 200(+20 guard) x 4.0 mm, as well as, Hypersil 3 microns: 150(+20 guard) x 4.0 mm: a UV range photodiode array (PDA) detection was employed. Optimization studies carried out in model solutions, as a function of the temperature (30-55 degrees C) and flow-rate (0.8-2.5 ml/min) of eluents proved that optimum resolutions are associated with the highest flow-rate applicable, (remaining on the safe side with a column pressure of < 3500 p.s.i., 1 p.s.i. = 6894.76 Pa), in the temperature range of 30-50 degrees C. Twenty-seven amino acids, characteristic in apples in free forms, have been separated and determined on all seven columns, performing the same gradient program, (the main component asparagine, present in overwhelming excess, and the minor constituents glutamine, beta-alanine, gamma-aminobutyric acid, homoserine, homoarginine and 1-aminocyclopropane-1-carboxylic acid). Optimum conditions, at 2.1 ml/min, at 50 degrees C, with 40 min run time, including equilibration, have been obtained with the Hypersil, 150(+20 guard) x 4 mm column, performing elutions. Responses of the corresponding amino acids proved to be independent of the column used; reproducibility in the concentration range of 15-1500 pmol was < 4.0% R.S.D. (relative standard deviation). Detailed study of the PDA spectra revealed that in addition to the identification/peak purity possibilities further characteristics can be obtained taking advantage of the difference in maximum values and of those of their special ratio values, respectively. The utility of the protocol was shown in the quantitation of the free amino acid content of three apple varieties.  相似文献   

4.
Silver ion HPLC (Ag-HPLC), utilizing columns containing silver ions bonded to a silica substrate and acetonitrile in hexane as solvent, has proven to be a powerful technology for the analysis of geometric (cis or trans) or positional fatty acids, fatty acid ester (primarily methyl ester; FAME), or triacylglycerol (TAG) isomers. Previous studies had demonstrated that, unlike gas chromatography, samples eluted more rapidly at lower temperatures (at 20 degrees C versus 40 degrees C, for example). A low-temperature bath [dual-column Ag-HPLC; isocratic solvent systems of 0.3 to 0.7% acetonitrile (ACN) in hexane] was utilized to study the application of this system at low (below 0 degrees C) temperatures for analysis of FAME (zero to six double bonds) and TAG [SSS, OOO and LLL, where S=stearic acid (18:0), O=oleic acid (9c-18:1), and L=linoleic acid (9c, 12c-18:2)] standards. While FAME elution times continued to decrease from 0 degrees C to -10 degrees C, they began to increase at -20 degrees C. A similar situation was noted for the TAG isomers, except that retention times began to increase below 0 degrees C. The lower temperature limit of the Ag-HPLC/ACN in hexane system is thus ca. -25 degrees C. Increasing sample elution times and pump head pressures upon sample injection were noted at temperatures of -25 degrees C to -40 degrees C. Equilibration times at each temperature could be reduced to ca. 15 min without loss of resolution and with retention times of +/-2%. Temperature, rather than solvent composition, can therefore be utilized with the Ag-HPLC/ACN in hexane solvent system to optimize elution times and resolution(s) of FAME and TAG isomers.  相似文献   

5.
We have developed a method based on a double labeling with stable isotopes and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analyses to study amino acid exchange in a symbiotic plant-microbe association. Isotopic precision was studied for 21 standards including 15 amino acid derivatives, three N-protected amino acid methyl esters, three amines and one international standard. High correlations were observed between the δ(13)C and δ(15)N values obtained by GC/C/IRMS and those obtained by an elemental analyzer (EA) coupled to an isotope ratio mass spectrometer (R(2) = 0.9868 and 0.9992, respectively). The mean precision measured was 0.04‰ for δ(13)C and 0.28‰ for δ(15)N (n = 15). This method was applied in vivo to the symbiotic relationship between alfalfa (Medicago sativa L.) and N(2)-fixing bacteria. Plants were simultaneously labeled over 10 days with (13)C-depleted CO(2) ((12)CO(2)), which was assimilated through photosynthesis by leaves, and (15)N(2) fixed via nodules. Subsequently, the C and N isotope compositions (i.e. δ(13)C and δ(15)N) of free amino acids were analyzed in leaves and nodules by GC/C/IRMS. The method revealed the pattern of C and N exchange between leaves and nodules, highlighting that γ-aminobutanoic acid and glycine may represent an important form of C transport from leaves to the nodules. The results confirmed the validity, reliability and accuracy of the method for assessing C and N fluxes between plants and symbiotic bacteria and support the use of this technique in a broad range of metabolic and fluxomic studies.  相似文献   

6.
Electrospray ionization of mixtures of isomeric and isobaric amino acids was investigated with the goal of distinguishing and quantifying the components. Isomeric amino acids leucine and isoleucine were readily distinguished and quantified in 90 : 10 to 10 : 90 binary mixtures using two-stage (MS(2)) and three-stage (MS(3)) tandem mass spectrometric dissociations of ternary Cu(2+)-2, 2'-bipyridyl (bpy) complexes, [Cu(AA - H)bpy](+). The complexes self-assembled in solution upon mixing the components and provided a convenient means of efficient derivatization that increased the efficiency of amino acid ionization by electrospray and shifted the mass of the analytes to a region which was free of solvent interferences. Low-energy dissociations of [Cu(AA - H)bpy](+) complexes in a quadrupole ion trap were achieved at >90% conversions and >80% trapping efficiencies for the MS(2) and MS(3) precursor and fragment ions. Isobaric amino acids glutamine and lysine were also distinguished through MS(2) and MS(3) of their ternary complexes with Cu(2+) and bpy. ESI of [Cu(Gln - H)bpy](+) was enhanced in the presence of [Cu(Lys - H)bpy](+), which resulted in non-linear response at low Lys concentrations.  相似文献   

7.
Electrospray ionization (ESI) mass spectra of ternary complexes of Cu(2+) and 1,10-phenanthroline with the 20 essential amino acids (AA) were investigated quantitatively. Non-basic amino acids formed singly charged complexes of the [Cu(AA - H)phen](+) type. Lysine (Lys) and arginine (Arg) formed doubly charged complexes of the [Cu(HAA - H)phen](2+) type. Detection limits were determined for the complexes of phenylalanine (Phe), glutamic acid (Glu) and Arg, which were at low micromolar or submicromolar concentrations under routine conditions. Detection limits of low nanomolar concentrations are possible for amino acids with hydrophobic side-chains (Phe, Tyr, Trp, Leu, Ile) as determined for Phe. The efficiencies for the formation by ESI of gaseous [Cu(AA - H)phen](+) ions were determined and correlated with the acid-base properties of the amino acids, ternary complex stability constants and amino acid hydrophobicities expressed as the Bull-Breese indices (DeltaF). A weak correlation was found between DeltaF and the ESI efficiencies for the formation of gaseous [Cu(AA - H)phen](+) [Cu(HAA - H]phen](2+) and [AA + H](+) ions that showed that amino acids with hydrophobic side-chains were ionized more efficiently. In the ESI of binary and ternary amino acid mixtures, the formation of gas-phase Cu-phen complexes of amino acids with hydrophobic side-chains was enhanced in the presence of complexes of amino acids with polar or basic side-chains. An interesting enhancement of the ESI formation of [Cu(Glu - H)phen](+) was observed in mixtures. The effect is explained by ion-cluster formation at the droplet interface that results in enhanced desorption of the glutamic acid complex.  相似文献   

8.
Several amino acid enantiomer derivatives were prepared with different chloroformates and analysed by gas chromatography (GC) on a Chirasil-L-Val GC column, at a temperature below 200 degrees C. Among them the N(O,S)-ethoxycarbonyl heptafluorobutyl esters presented the best compromise between short retention times, high yield responses and good resolution for almost all the tested amino acids. These derivatives proved to be suited for quantification of amino acids in aqueous media, with L-p-chlorophenylalanine as internal standard. The developed procedure was applied to several food samples for determination of their free amino acid profiles.  相似文献   

9.
5-aminolevulinic acid (5-ALA) and its ester derivatives are used in photodynamic therapy as precursors for the formation of photosensitizers. This study relates to the mechanisms by which 5-ALA is transported into cells. The transport of 5-ALA has been studied in a human adenocarcinoma cell line (WiDr) by means of [14C]-labeled 5-ALA. The rate of uptake was saturable following Michaelis-Menten kinetics (K(m) = 8-10 mM and Vmax = 18-20 nmol.(mg protein x h)-1), and Arrhenius plot of the temperature-dependent uptake of 5-ALA was characterized by a single discontinuity at 32 degrees C. The activation energy was 112 kJ.mol-1 in the temperature range 15 degrees-32 degrees C and 26 kJ.mol-1 above 32 degrees C. Transport of 5-ALA was Na+ and partly Cl(-)-dependent. Stoichiometric analysis revealed a Na+:5-ALA coupling ratio of 3:1. With the exception of valine, methionine and threonine, zwitterionic and basic amino acids inhibited the transport of 5-ALA. 5-ALA methyl ester was not an inhibitor of 5-ALA uptake. The transport was most efficiently inhibited, i.e. by 65-75%, by the beta-amino acids, beta-alanine and taurine and by gamma-aminobutyric acid (GABA). Accordingly, 5-ALA, but not 5-ALA methyl ester, was found to inhibit cellular uptake of [3H]-GABA and [14C]-beta-alanine. Protoporphyrin IX (PpIX) accumulation in the presence of 5-ALA (0.3 mM) was attenuated 85% in the presence of 10 mM beta-alanine, while PpIX formation in cells treated with 5-ALA methyl ester (0.3 mM) or 5-ALA hexyl ester (4 microM) was not significantly influenced by beta-alanine. Thus, 5-ALA, but not 5-ALA esters, is transported by beta-amino acid and GABA carriers in this cell line.  相似文献   

10.
This work presents an HPLC method for the quantification of free amino acids in lyophilized protein fraction from shrimp waste hydrolysate which is obtained by acid lactic fermentation and analyzed using pre-column derivatization with 9-fluorenylmethyl-chloroformate. The amino acids were separated in a Hypersil ODS 5 microm column (250 mm x 4.6 mm) at 38 degrees C. The mobile phase was a mixture of phase A: 30 mM ammonium phosphate (pH 6.5) in 15:85 (v/v) methanol/water; phase B: 15:85 (v/v) methanol/water; and phase C: 90:10 (v/v) acetonitrile/water, with flow rate 1.2 ml/min. Fluorescence detection was used at an excitation wavelength of 270 nm and an emission wavelength of 316 nm. Method precisions for the different amino acids were between 4.4 and 7.1% (relative standard deviation, RSD); detection limits were between 23 and 72 ng/ml; and the recoveries were between 89.0 and 95.0%. The amino acid present at the highest concentration was tyrosine.  相似文献   

11.
HIV-1 and influenza viral fusion peptides are biologically relevant model fusion systems and, in this study, their membrane-associated structures were probed by solid-state NMR (13)C chemical shift measurements. The influenza peptide IFP-L2CF3N contained a (13)C carbonyl label at Leu-2 and a (15)N label at Phe-3 while the HIV-1 peptide HFP-UF8L9G10 was uniformly (13)C and (15)N labeled at Phe-8, Leu-9 and Gly-10. The membrane composition of the IFP-L2CF3N sample was POPC-POPG (4:1) and the membrane composition of the HFP-UF8L9G10 sample was a mixture of lipids and cholesterol which approximately reflects the lipid headgroup and cholesterol composition of host cells of the HIV-1 virus. In one-dimensional magic angle spinning spectra, labeled backbone (13)C were selectively observed using a REDOR filter of the (13)C-(15)N dipolar coupling. Backbone chemical shifts were very similar at -50 and 20 degrees C, which suggests that low temperature does not appreciably change the peptide structure. Relative to -50 degrees C, the 20 degrees C spectra had narrower signals with lower integrated intensity, which is consistent with greater motion at the higher temperature. The Leu-2 chemical shift in the IFP-L2CF3N sample correlates with a helical structure at this residue and is consistent with detection of helical structure by other biophysical techniques. Two-dimensional (13)C-(13)C correlation spectra were obtained for the HFP-UF8L9G10 sample and were used to assign the chemical shifts of all of the (13)C labels in the peptide. Secondary shift analysis was consistent with a beta-strand structure over these three residues. The high signal-to-noise ratio of the 2D spectra suggests that membrane-associated fusion peptides with longer sequences of labeled amino acids can also be assigned with 2D and 3D methods.  相似文献   

12.
Lee JH  Choi OK  Jung HS  Kim KR  Chung DS 《Electrophoresis》2000,21(5):930-934
An efficient separation of eleven nonprotein amino acids (NPAAs) and three protein amino acids containing aromatic moieties was achieved by capillary electrophoresis without derivatization. The fourteen amino acids were well separated with a 100 mM sodium phosphate run buffer (pH 2.0) using a 57 cm fused-silica capillary (50 microm ID, 50 cm effective length) at 20 degrees C. With an electric field of 351 V/cm, the time needed for the separation was less than 20 min. Under optimum conditions, excellent linear responses were obtained in the concentration range of 5-100 microM, with the linear correlation coefficient ranging from 0.9785 or greater. The relative standard deviations of the migration times and the corrected peak areas were found to be 1.5-3.9% and 8.0-11.5%, respectively. In order to improve the limit of detection (LOD), simple stacking and large volume stacking using an EOF pump (LVSEP) methods were used. Improved LODs were about 300 nM in stacking and below 15 nM for five small NPAAs in LVSEP.  相似文献   

13.
建立了使用超高效液相色谱-串联质谱(UHPLC-MS/MS)高效、快速直接测定茶叶中游离氨基酸的方法。通过对质谱、色谱条件及氨基酸提取条件的优化,以含0.2%(体积分数)甲酸的5 mmol/L乙酸铵水溶液和甲醇为流动相进行梯度洗脱,在电喷雾离子(ESI)源正离子扫描模式下检测,通过UHPLC-MS/MS测定,共解析了茶叶中的20种氨基酸。结果表明,茶氨酸(Thea)、Arg、Asn和Asp在50~500 μg/L范围内线性关系良好,其他氨基酸在10~250 μg/L范围内线性关系良好,相关系数均大于0.99;加标回收率为92.3%~109.2%,相对标准偏差为2.00%~9.88%,检出限为0.001~0.011 mg/L,定量限为0.010~0.053 mg/L。该方法灵敏、准确,具有良好的重复性和稳定性,可有效检测出茶叶中的20种氨基酸及氨基类成分。  相似文献   

14.
The acid ionization constants of some pyrimidine bases of nucleic acids were determined pH-metrically at 25 degrees C and at the constant ionic strength I = 0.10 mol l(-1) (KNO3) in pure water as well as in aqueous media containing variable mole percentages (5-30%) of organic solvents. The organic solvents used were methanol, ethanol, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetonitrile, acetone and dioxane. The results obtained indicated that the acidity constants are generally decreased as the content of an organic solvent in the medium is increased. It was deduced that the hydrogen bonding interactions and the solvent basicity in addition to the electrostatic effect are the major effects influencing significantly the acid ionization process of pyrimidine bases in the different water-organic solvent media. Some thermodynamic parameters (deltaH, deltaG degrees, deltaS degrees) of the ionization process over the temperature range 5-45 degrees C in pure water were also determined and discussed.  相似文献   

15.
Separative method of lipid classes from the stratum corneum was developed with packed silica and supercritical CO2 containing 10% of methanol at 15 degrees C, 15 MPa and 3 ml min(-1). The elution order of lipid classes was first esterified cholesterol, triglycerides, squalene co-eluted in a single peak, then free fatty acids, free cholesterol, ceramides and finally glycosylceramides. The ceramides were eluted in several fractions which depended on the number of hydroxyl groups in the molecule, i.e. more hydroxyl groups were contained in ceramides, more important was the retention. Moreover, the retention was not altered by the presence of carbon double bond and variation of the alkyl chain length. The ceramide response with the evaporative light scattering detector was improved by turning the influence of the solvent nature on the response to advantage. Therefore, addition of various solvents with or without triethylamine and formic acid were tested in post-column due to the incompatibility of such modifiers with silica stationary phase. Thereby the solvent conditions for the separation and the detection can be adjusted almost independently. The response was greatly increased by post-column addition of 1% (v/v) triethylamine and its equivalent amount of formic acid in dichloromethane introduced at 0.1 ml min(-1) into the mobile phase. This device had allowed the detection of 400 ng of ceramide with a S/N = 21, whereas no peak was observed in absence of the post-column addition. Finally, the method was applied to the treatment of skin sample which led to highly enriched ceramide fraction.  相似文献   

16.
Zhang  Zhongyi  Xiao  Huayun  Zheng  Nengjian  Gao  Xiaofei  Zhu  RenGuo 《Chromatographia》2016,79(17):1197-1205

Individual free amino acid δ15N values in plant tissue reflect the metabolic pathways involved in their biosynthesis and catabolism and could thus aid understanding of environmental stress and anthropogenic effects on plant metabolism. In this study, compound-specific nitrogen isotope analysis of amino acid by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) was carried out to determine individual free amino acid δ15N values. High correlations were observed between the δ15N values obtained by GC-C-IRMS and elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) determinations, and the mean precision measured was better than 1 ‰. Cation-exchange chromatography was employed to purify the sample, and the difference between prior to and following passage through the resin was within 1 ‰. The amino acid δ15N values of plant leave samples following incubation in 15N-nitrate at different time points were determined. A typical foliar free amino acid 15N-enrichment pattern was found, and glutamine was the most rapidly labeled amino acid; other amino acids derived from the GS-GOGAT cycle were also enriched. The pyruvate family amino acids were labeled less quickly followed by the aromatic amino acids. This study highlighted that amino acid metabolism pathways had a major effect on the δ15N values. With the known amino acid metabolism pathways and δ15N values determined by the presented method, the influence of various external factors on the metabolic cycling of amino acid can be understood well.

  相似文献   

17.
High-performance liquid chromatography (HPLC) coupled to atmospheric pressure chemical ionization (APCI) mass spectrometry was used for the separation and detection of amino acid and peptide enantiomers. With detection limits as low as 250 pg, 25 amino acids enantiomers were baseline resolved on a Chirobiotic T chiral stationary phase. APCI demonstrated an order of magnitude better sensitivity over electrospray ionization (ESI) for free amino acids and low molecular mass peptides at the high LC flow-rates necessary for rapid analysis. As the peptide chain length increased (peptides with M(r) > or = 300 Da), however, ESI proved to be the more ideal atmospheric pressure ionization source. A mobile phase consisting of 1% (w/w) ammonium trifluoroacetate in methanol and 0.1% (w/w) formic acid in water increased the sensitivity of the APCI method significantly. A step gradient was then used to separate simultaneously all 19 native protein amino acid enantiomers in less than 20 min using extracted ion chromatograms.  相似文献   

18.
An amino acid analysis by reversed-phase high-performance liquid chromatography after precolumn derivatization with phenyl isothiocyanate was adapted to the determination of free amino acids in plasma or other biological fluids and in tissue homogenates. Preparation of samples included deproteinization by 3% sulphosalicylic acid, and careful removal under high vacuum of residual phenyl isothiocyanate after derivatization. A Waters Pico-Tag column (15 cm long) was used, immersed in a water-bath at 38 degrees C. In rat or human plasma, separation of 23 individual amino acids, plus the unresolved pair tryptophan and ornithine, was obtained within 13 min. Including the time for column washing and re-equilibration, samples could be chromatographed at 23-min intervals. Variability was tested for each amino acid by calculating the coefficients of variation of retention times (less than 1% in the average) and peak areas (less than 4% for both intra-day and inter-day determinations). The linearity for each standard amino acid was remarkable over the concentration range 3-50 nmol/ml. The mean recovery of amino acid standards added to plasma prior to derivatization was 97 +/- 0.8%, except for aspartate (82%) and glutamate (81%). This method is rapid (almost three samples per hour can be analysed, more than in any other reported technique), with satisfactory precision, sensitivity and reproducibility. Therefore, it is well suited for routine analysis of free amino acids in both clinical and research work.  相似文献   

19.
Amino acid formamidene butyl esters are optimally prepared by heating amino acids with dimethylformamide dimethylacetal (DMF-DMA) for 2 minutes at 65 degrees C and then with n-butanol/hydrogen chloride for 15 minutes at 65 degrees C. The formamidene butyl esters of simple alpha-amino acids and beta-amino acids afford between 1.1 and 20 times the signal intensity of the corresponding butyl esters during electrospray ionization tandem mass spectral analysis. Complex alpha-amino acids, such as ornithine, arginine and citrulline, and gamma-amino acids are better analyzed as butyl esters. Secondary alpha-amino acids, such as proline and sarcosine, give a mixture of two iminium salts with the DMF-DMA derivatization method. A derivative incorporating two molecules of the amino acid predominates at higher derivatization temperatures. Contrary to a previous report, N-formylamino acids were not detected. The presence of secondary amino acids in amino acid mixtures, derivatized as formamidene butyl esters, affords derivatives that incorporate two different amino acids. The new formamidene butylation method is unlikely to replace the butylation procedure used by neonatal blood spot screening programs for amino acid disorders, since a much poorer response was obtained with formamidene butyl esters of arginine and citrulline, important in the diagnosis of arginase deficiency and citrullinaemia.  相似文献   

20.
A new method to analyze free amino acids using desorption electrospray ionization (DESI) has been implemented. The method is based on the neutral loss mode determination of underivatized amino acids using a tandem quadrupole mass spectrometer equipped with an unmodified atmospheric interface. Qualitative and quantitative optimization of DESI parameters, including ESI voltage, solvent flow rate, angle of collection and incidence, gas flow and temperatures, was performed for amino acids detection. The parameters for DESI analysis were evaluated using a mixture of valine, leucine, methionine, phenylalanine and tyrosine standards. A few microliters of this mixture were deposited on a slide, dried and analyzed at a flow rate of 2 microL/min. The optimal ionization response was obtained using laboratory glass slides and an equivalent solution of water/methanol doped with 2% of formic acid. The method specificity was evaluated by comparing product ion spectra and neutral loss analysis of amino acids obtained either by DESI or by electrospray ionization flow injection analysis (ESI-FIA). To evaluate the quantitative response on amino acids analyzed by DESI, calibration curves were performed on amino acid standard solutions spiked with a fixed amount of labelled amino acids. The method was also employed to analyze free amino acids from blood spots, after a rapid solvent extraction without other sample pretreatment, from positive and negative subjects. The method enables one to analyze biological samples and to discriminate healthy subjects from patients affected by inherited metabolic diseases. The intrinsic high-throughput analysis of DESI represents an opportunity, because of its potential application in clinical chemistry, for the expanded screening of some inborn errors of metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号