首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Ce3+-doped silica was synthesized by sol-gel technique. The absorption band at 252 nm of Ce3+-doped silica is close to the main absorption band of Ce(NO3)3 solution. Three different luminescence bands were observed in the samples annealed at temperatures from 100 to 1200 °C, and the intensity of these luminescence bands changed with the alteration of the heat-treating temperatures. In addition to two well-known main luminescence bands of 4f-5d transition of Ce3+ with the wavelength at 357 and 450 nm, a rarely reported luminescent band with the wavelength at 344 nm was also observed, which was attributed to some kind of oxygen-related defects of silica.  相似文献   

2.
This letter reports the novel three emission bands based on phosphate host matrix, KBaPO4 doped with Eu2+, Tb3+, and Sm3+ for white light-emitting diodes (LEDs). The phosphors were synthesized by solid-state reaction and thermal stability was elucidated by measuring photoluminescence at higher temperatures. Eu2+-doped KBaPO4 phosphor emits blue luminescence with a peak wavelength at 420 nm under maximum near-ultraviolet excitation of 360 nm. Tb3+-doped KBaPO4 phosphor emits green luminescence with a peak wavelength at 540 nm under maximum near-ultraviolet excitation of 370 nm. Sm3+-doped KBaPO4 phosphor emits orange-red luminescence with a peak wavelength at 594 nm under maximum near-ultraviolet excitation of 400 nm. The thermal stabilities of KBaPO4:Ln (Ln=Eu2+, Tb3+, Sm3+), in comparison to commercially available YAG:Ce3+ phosphor were found to be higher in a wide temperature range of 25-300 °C.  相似文献   

3.
Mn2+-doped Zn2SiO4 phosphors had been prepared by hydrothermal method in stainless-steel autoclaves. Effects of synthesized methods, reaction temperature, ambience of heat treatment on the structure and the luminescence properties of this silicate were studied with X-ray diffraction apparatus (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and fluorescence spectrum. Results show that Zn2SiO4 nanocrystalline can be obtained by hydrothermal method at relatively low temperatures. The absorption pattern shows an absorption edge at about 380 nm originated from ZnO crystals and two absorption bands at about 215 and 260 nm. Mn2+-doped Zn2SiO4 has a luminescence band with the wavelength at about 522 nm under 255 nm excitation, and the luminescent intensity increases after being heat treated.  相似文献   

4.
The sol–gel process provides an attractive low temperature alternative to the melt process for producing Ce-doped silica, but reports of the emission wavelength have not been consistent. In this paper, luminescence measurements using a variety of excitation methods, including cathodoluminescence not yet reported by other researchers, are compared and evaluated in the light of previously published data. Several papers report luminescence around 350 nm but emission near this wavelength was not found from our samples. This luminescence originates from Ce that has not yet been incorporated in the silica and is found in samples that have not undergone high temperature annealing. Our photoluminescence results from samples annealed in a reducing atmosphere suggest that emission from Ce incorporated in the silica lattice occurs near 455 nm, and some indication of the emission from Ce in amorphous clusters at 400 nm is also found. However, our results also confirm earlier indications that intrinsic defects in silica can create photoluminescence near both these wavelengths, which can make identification of the luminescence due to Ce difficult. Finally, it has been found that samples which have been annealed in air, and therefore display poor photoluminescence because most of the Ce occurs in the tetravalent form, are luminescent under electron beam excitation. It is suggested that during cathodoluminescence measurements Ce4+ ions capture electrons to form excited Ce3+ ions from which the luminescence originates.  相似文献   

5.
NaLaP2O7 and NaGdP2O7 powder samples are prepared by solid-state reactions at 750 and 600 °C, respectively, and the VUV-excited luminescence properties of Ln3+ (Ln=Ce, Pr, Tb, Tm, Eu) in both diphosphates are studied. Ln3+ ions in both hosts show analogous luminescence. For Ce3+-doped samples, the five Ce3+ 5d levels can be clearly identified. As for Pr3+ and Tb3+-doped samples, strong 4f-5d absorption band around 172 nm is observed, which matches well with Xe-He excimer in plasma display panel (PDP) devices. As a result, Pr3+ can be utilized as sensitizer to absorb 172 nm VUV photon and transfer energy to appropriate activators, and Tb3+-doped NaREP2O7(RE=La, Gd) are potential 172 nm excited green PDP phosphors. For Tm3+ and Eu3+-doped samples, the Tm3+-O2− charge transfer band (CTB) is observed to be at 177 nm, but the CTB of Eu3+ is observed at abnormally low energy position, which might originate from multi-position of Eu3+ ions. The similarity in luminescence properties of Ln3+ in both hosts indicates certain structural resemblance of coordination environment of Ln3+ in the two sodium rare earth diphosphates.  相似文献   

6.
Rare earth doped NaLa(WO4)2 nanoparticles have been prepared by a simply hydrothermal synthesis procedure. The X-ray diffraction (XRD) pattern shows that the Eu3+-doped NaLa(WO4)2 nanoparticles with an average size of 10-30 nm can be obtained via hydrothermal treatment for different time at 180 °C. The luminescence intensity of Eu3+-doped NaLa(WO4)2 nanoparticles depended on the size of the nanoparticles. The bright upconversion luminescence of the 2 mol% Er3+ and 20 mol% Yb3+ codoped NaLa(WO4)2 nanoparticles under 980 nm excitation could also be observed. The Yb3+-Er3+ codoped NaLa(WO4)2 nanoparticles prepared by the hydrothermal treatment at 180 °C and then heated at 600 °C shows a 20 times stronger upconversion luminescence than those prepared by hydrothermal treatment at 180 °C or by hydrothermal treatment at 180 °C and then heated at 400 °C.  相似文献   

7.
ZnS:Cu+ and ZnS:Cu2+ nanocrystallites have been obtained by chemical precipitation from homogeneous solutions of zinc, copper salt compounds, with S2− as precipitating anion formed by decomposition of thioacetamide. X-ray diffraction (XRD) analysis shows that average diameter of particles is about 2.0-2.5 nm. The nanoparticles can be doped with copper during synthesis without altering XRD pattern. However, the emission spectrum of ZnS nanocrystallites doped with Cu+ and Cu2+ consists of two emission peaks. One is at 450 nm and the other is at 530 nm. The absorptive spectrum of the doped sample is different from that of un-doped ZnS nanoparticles. Because the emission process of the Cu+ luminescence center in ZnS nanocrystallites is remarkably different from that of the Cu2+ luminescence center, the emission spectra of Cu+-doped samples are different from those of Cu2+-doped samples.  相似文献   

8.
Green luminescence and degradation of Ce3+ doped CaS nanocrystalline phosphors were studied with a 2 keV, 10 μA electron beam in an O2 environment. The nanophosphors were synthesized by the co-precipitation method. The samples were characterized using X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy/electron dispersive X-ray spectroscopy and Photoluminescence (PL) spectroscopy. Cubic CaS with an average particle size of 42 ± 2 nm was obtained. PL emission was observed at 507 nm and a shoulder at 560 nm with an excitation wavelength of 460 nm. Auger electron spectroscopy and Cathodoluminescence (CL) were used to monitor the changes in the surface composition of the CaS:Ce3+ nanocrystalline phosphors during electron bombardment in an O2 environment. The effect of different oxygen pressures ranging from 1 × 10−8 to 1 × 10−6 Torr on the CL intensity was also investigated. A CaSO4 layer was observed on the surface after the electron beam degradation. The CL intensity was found to decrease up to 30% of its original intensity at 1 × 10−6 Torr oxygen pressure after an electron dose of 50 C/cm2. The formation of oxygen defects during electron bombardment may also be responsible for the decrease in CL intensity.  相似文献   

9.
Yttrium aluminum garnet nanoparticles both undoped and doped with lanthanide ions (Ce3+, Eu3+, Dy3+ and Tb3+) having average size around 30 (±3 nm) nm were prepared by glycine nitrate combustion method followed by annealing at a relatively low temperature of 800 °C. Increase in the annealing temperature has been found to improve the luminescence intensity and for 1200 °C heated samples there exists strong energy transfer from Tb3+ to Ce3+ ions in YAG:Ce(2%),Tb(2%) nanoparticles as revealed by luminescence studies. Co-doping the YAG:Ce nanoparticles with Eu3+ results in significant decrease in the emission intensity of both Ce3+ and Eu3+ ions and this has been attributed to the oxidation of Ce3+ to Ce4+ and reduction of Eu3+ to Eu2+ ions. Dy3+ co-doping did not have any effect on the Ce3+ emission as there is no energy transfer between Dy3+ and Ce3+ ions.  相似文献   

10.
A simple combustion route was employed for the preparation of Eu3+-doped MgAl1.8Y0.2−xO4 nanocrystals using metal nitrates as precursors and urea as a fuel in a preheated furnace at 500 °C. The powders thus obtained were then fired at 1000 °C for 3 h to get better luminescent properties. The incorporation of Eu3+ activator in these nanocrystals was checked by luminescence characteristics. These nanocrystals displayed bright red color on excitation under 254 nm UV source. The main emission peak was assigned to the transition [5D07F2] at 615 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were carried out to understand surface morphological features and the particle size. Crystal structures of the nanocrystals were investigated by the X-ray diffraction (XRD) technique. The crystallite size of the as-prepared nanocrystals was around 29 nm, which was evaluated from the broad XRD peaks. The crystallite size increased to ∼45 nm on further heat treatment at 1000 °C.  相似文献   

11.
Green emission at around 500 nm is observed in Gd2O3:Ce3+ nanoparticles and the intensity is highly dependent on the concentration of Ce3+ in the nanoparticles. The luminescence of this emission displays both picosecond (ps) and millisecond (ms) lifetimes. The ms lifetime is over four orders of magnitude longer than typical luminescence lifetimes (10-40 ns) of Ce3+ in traditional Ce3+ doped phosphors and therefore likely originates from defect states. The picosecond lifetime is shorter than the typical Ce3+ value and is also likely due to defect or surface states. When the samples are annealed at 700 °C, this emission disappears possibly due to changes in the defect moieties or concentration. In addition, a blue emission at around 430 nm is observed in freshly prepared Gd2O3 undoped nanoparticles, which is attributed to the stabilizer, polyethylene glycol biscarboxymethyl ether. On aging, the undoped particles show similar emission to the doped particles with similar luminescence lifetimes. When Eu3+ ions are co-doped in Gd2O3:Ce nanoparticles, both the green emission and the emission at 612 nm from Eu3+ are observed.  相似文献   

12.
Spectroscopic properties and energy transfer (ET) in Ga2O3-GeO2-Bi2O3-Na2O (GGBN, glass doped with Er3+ and rare earths (RE3+; RE3+=Ce3+, Tb3+) have been investigated. Intense 1.53-μm emission with the peak emission cross-section achieved to 7.58×10−21 cm2 from Er3+-doped GGBN glass has been obtained upon excitation at 980 nm. Effects of RE3+ (RE3+=Ce3+, Tb3+) codoping on the optical properties of Er3+-doped GGBN glass have been investigated and the possible ET mechanisms involved have also been discussed. Significant enhancement of the 1.53 μm emission intensity and decrease of upconversion (UC) fluorescence with increasing Ce3+ concentration have been observed. The incorporation of Tb3+ into Er3+-doped GGBN glass could significantly decrease the UC emission intensity, but meanwhile decrease the 1.53 μm emission intensity due to the ET from Er3+:4I13/2 to Tb3+:7F2. The results indicate that the incorporation of Ce3+ into Er3+-doped GGBN glass can effectively improve 1.53-μm and lower UC luminescence, which makes GGBN glass more attractive for use in C-band optical fiber amplifiers.  相似文献   

13.
Li-doping has been used to improve luminescent characteristics of thin films. Influence of Li-doping on the crystallization, surface morphology and luminescent properties of GdVO4:Eu3+ films have been investigated. Crystallinity and surface morphology of thin films have been very important factors to determine luminescent characteristics and depended on the deposition conditions. The GdVO4:Eu3+ and Li-doped GdVO4:Eu3+ thin films have been grown using pulsed laser deposition method on Al2O3 (0 0 0 1) substrates at a substrate temperature of 600 °C under an oxygen pressure of 13.33-53.33 Pa. The crystallinity and surface morphology of the films were investigated using X-ray diffraction (XRD) and atomic force microscope (AFM), respectively. A broadband incoherent ultraviolet light source with a dominant excitation wavelength of 310 nm and a luminescence spectrometer have been used to measure photoluminescence spectra at room temperature. The emitted radiation was dominated by the red emission peak at 619 nm radiated from the transition of 5D0-7F2 of Eu3+ ions. Particularly, the peak intensity of Li-doped GdVO4 films was increased by a factor of 1.7 in comparison with that of GdVO4:Eu3+ films. The enhanced luminescence results not only from the improved crystallinity but also from the reduced internal reflections caused by rougher surfaces. The luminescent intensity and surface roughness exhibited similar behavior as a function of oxygen pressure.  相似文献   

14.
Functionalized nanoparticles are discussed. Surfaces of CdS:Mn/ZnS core/shell nanospheres (Qdots) were converted from hydrophobic to hydrophilic by growth of a SiO2 shell. The colloidal dispersion was stabilize by adding a surfactant with a negative surface charge, and a cell-penetrating-peptide, TAT, was attached through a primary amine group. The TAT functionalized Qdots were shown to pass the blood-brain-barrier and luminescence in the infused half of the brain.In addition, nanorods of S2− rich CdS were synthesized by reaction of excess S with Cd precursors in the presence of ethylene diamine. The photoluminescence (PL) peak from the S2− rich CdS nanorods was broad with a maximum at ∼710 nm, which was 40 nm longer in wavelength than the PL peak from Cd2+ rich CdS (∼670 nm) nanorods. The influence of surface electron or hole trap states on the luminescent pathway of CdS nanorods were used to explain these shifts in wavelength. Nanocrystals of Au with ∼2 nm diameters were grown on S2− rich surfaces of CdS nanorods. Significant quenching of photoluminescence was observed from Au nanocrystals on CdS nanorods due to interfacial charge separation. Charge separation by Au nanocrystals on CdS resulted in enhanced UV photocatalytic degradation of Procion red mix-5B (PRB) dye in aqueous solution.  相似文献   

15.
This report presents the luminescence properties of Ce3+ and Pr3+ activated Sr2Mg(BO3)2 under VUV-UV and X-ray excitation. The five excitation bands of crystal field split 5d states are observed at about 46 729, 44 643, 41 667, 38 314 and 29 762 cm−1 (i.e. 214, 224, 240, 261 and 336 nm) for Ce3+ in the host lattice. The doublet Ce3+ 5d→4f emission bands were found at about 25 840 and 24 096 cm−1 (387 and 415 nm). The influence of doping concentration and temperature on the emission characteristics and the decay time of Ce3+ in Sr2Mg(BO3)2 were investigated. For Pr3+ doped samples, the lowest 5d excitation band was observed at about 42017 cm−1 (238 nm), a dominant band at around 35714 cm−1 (280 nm) and two shoulder bands were seen in the emission spectra. The excitation and emission spectra of Ce3+ and Pr3+ were compared and discussed. The X-ray excited luminescence studies show that the light yields are ∼3200±230 and ∼1400±100 photons/MeV of absorbed X-ray energy for the samples Sr1.86Ce0.07Na0.07Mg(BO3)2 and Sr1.82Pr0.09Na0.09Mg(BO3)2 at RT, respectively.  相似文献   

16.
Neodymium doped strontium gallogermanate crystals were grown successfully by the Bridgman technique. The linear thermal expansion coefficients for the c- and a-axes were measured as 5.8 × 10−6 °C−1 and 6.5 × 10−6 °C−1. Absorption spectra, and fluorescence spectra, as well as fluorescence decay curves of Nd3+-doped Sr3Ga2Ge4O14 crystal, have been recorded at room temperature and used to calculate the absorption and stimulated emission cross-sections. Based on the Judd-Ofelt theory, three intensity parameters were obtained. The luminescent quantum efficiency of the 4F3/2 level was determined to be approximately 73.8% for this material. Compared with other Nd3+-doped laser crystals, Nd3+-doped Sr3Ga2Ge4O14 crystal displays special laser properties due to its disorder structure.  相似文献   

17.
We presented the energy transfer from Ce3+ to Eu2+ in CaAl2Si2O8 host. The Ce3+-doped CaAl2Si2O8 phosphor had a strong emission band at 378 nm under the vacuum ultraviolet (VUV) light. This emission spectrum of Ce3+ well overlapped with the excitation spectrum of Eu2+ under the UV illumination. As a result, the energy transfer from Ce3+ to Eu2+ in CaAl2Si2O8 matrix was observed under VUV excitation, which resulted in a significant enhancement of the emission peak intensity at 446 nm. More details about the luminescent properties were presented.  相似文献   

18.
Er3+/Ce3+ codoped bismuth-germanate glasses with the composition of Bi2O3-GeO2-Ga2O3-Na2O were prepared by the conventional melt-quenching method. The absorption spectra, fluorescence spectra, upconversion emission and lifetimes of Er3+ ions were measured, and the effects of Ce3+-doping on the spectroscopic properties of 1.53 μm band fluorescence of Er3+ ion were investigated based on the analysis of energy transfer between Er3+ and Ce3+ ions. The results indicate that the 1.53 μm band fluorescence intensity can be improved evidently with the Ce3+-doped concentration under the excitation of 980 nm. Meanwhile, the theoretical simulation based on the population rate equation and light power propagation equation indicates that the C + L band signal gain can also be improved dramatically by introducing Ce3+ ions into the Er3+-doped bismuth-germanate glass fiber. Therefore, it is necessary to introduce Ce3+ ions when Er3+-doped bismuth-germanate glass with low phonon energy is applied to the 1.53 μm band broad Er3+-doped fiber amplifier (EDFA).  相似文献   

19.
A novel blue light emitting NaSr1 − xPO4:Eu2+x (x = 0.001 to 0.02) phosphors were prepared by solid-state reaction method to investigate its optical properties and thermal stability for its application in white light-emitting diodes (w-LEDs). The excitation and emission spectra of the prepared phosphor reveal a broad emission peak centered at 460 nm which arises due to 4f-5d transitions of Eu2+ upon the near ultra-violet (n-UV) excitation wavelength at 380 nm. The effect of Eu2+ doping concentration and sintering temperature on the emission intensity of NaSrPO4:Eu2+ was investigated along with its chromaticity coordinates. The temperature dependent luminescence properties of the prepared phosphor show better results than that of the commercial YAG:Ce3+phosphor. Besides, their XRD, FT-IR, SEM, TG, and DTA profiles have also been analyzed to explore its structural details.  相似文献   

20.
The Cl→Pr3+ charge transfer transition is identified to occur in the excitation spectrum of PrCl3:Ce3+ at 211 nm (47,393 cm−1). A model based on the dissociation of the charge transfer state is proposed to explain the presence of the ligand-to-Pr3+ charge transfer transition band in the excitation spectrum of PrX3:Ce3+ (X=Cl, Br) when the Ce3+ emission is monitored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号