首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Phenanthrimidazoles as hole transport materials have been synthesized, characterized, and applied as nondoping emitters in organic light emitting devices. The synthesized molecules possess high fluorescent quantum yield and thermal properties and display film forming abilities. The highest occupied molecular orbital (HOMO) energies of these materials are shallower than the reported tris(8‐hydroxyquinoline)aluminum (Alq3), which enables the hole transport ability of these phenanthrimidazoles. Taking advantage of the thermal stability and hole transporting ability, these compounds can be used as a functional layer between NPB [4,4‐bis(N‐(1‐naphthyl)‐N‐phenylamino)biphenyl] and Alq3 layers and show that these phenanthrimidazoles can be alternatively used as novel hole transport materials and to improve the device performances. Geometrical, optical, electrical, and electroluminescent properties of these molecules have been probed. Further, natural bond orbital, nonlinear optical materials (NLO), molecular electrostatic potential, and HOMO–lowest unoccupied molecular orbital (LMO) energy analysis have been made by density functional theory (DFT) method to support the experimental results. Hyperpolarizability analysis reveals that the synthesized phenanthrimidazoles possess NLO behavior. The chemical potential, hardness, and electrophilicity index of phenanthrimidazoles have also been computed by DFT method. Photoinduced electron transfer explains the enhancement of fluorescence by nanoparticulate ZnO, and the apparent binding constant has been obtained. Adsorption of the fluorophore on ZnO nanoparticle lowers the HOMO and LUMO energy levels of the fluorophore. The strong adsorption of the phenanthrimidazoles on the surface of ZnO nanocrystals is likely due to the chemical affinity of the nitrogen atom of the organic molecule to Zn(II) on the surface of nanocrystal. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A self-consistent theory for calculation of built-in voltage (Ubi) of metal–organic semiconductor–metal (MOSM) structures is developed based on Gaussian energy distribution of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). It is shown that the built-in voltage depends not only on the work function difference of the two electrodes, but also on the mean energy level of HOMO and LUMO, as well as the Gaussian width of the energy distribution. The theory predicts that the spreading of HOMO and LUMO levels will results in an increase of Ubi, and that Ubi decreases with increasing temperature.  相似文献   

3.
A series of Schiff-bases chromophores containing imine or double C=C bond linkers between the donor and acceptor have been studied by first-principles calculations. The molecular structures, electronic properties and second order nonlinearities were investigated by DFT and ab initio methods. The optimized structural parameters of these Schiff-base derivates showed that these compounds are stable. The results of TD-DFT calculations indicate that the derivatives with the heterocyclic and imine linker have a red shift absorption compared to derivatives with the double C=C or N=N bonds. The analysis of the frontier molecular orbitals indicates that the CN group and the heterocycle linked by the CN or imine group has contribution to the LUMO orbital while the groups N(CH3)2 and the benzene ring linked by the double C=C or N=N bond have contribution to the HOMO orbital. The CN and the heterocyclic acceptors enable the derivatives to have a larger first static hyperpolarizability. However, the compounds 3-{4-[(4-Dimethylamino-phenylimino)-methyl]-pyridin-1-yl}-propanel-1-sulfonoperoxoic acid and 3-{4-[(4-Dimethylamino-phenylimino)-methyl]-quinolin-1-yl}propanel-1-sulfonoperoxoic acid with a substituent also have large first static hyperpolarizabilities due to the overwhelming contributions of electron density of the group to the HOMO orbital, that is, the HOMO orbital were constituted by the SO 3 ? group only. In order to understand the influence of the energy gap (??E) between the HOMO and the LUMO orbitals on the first static hyperpolarizability, we calculated the energy gap (??E) of all Schiff-base compounds. The results show that the smaller the HOMO-LUMO energy gap the larger the first static hyperpolarizability. The present study demonstrated that these compounds which have pure C=N double bond and heterocyclic substitution groups may have potential applications in the development of NLO materials.  相似文献   

4.
In a recent study [P.H. Acioli, N. Ratanavade, M.R. Cline, S. Srinivas, Lect. Notes Comput. Sci. 5545, 203 (2009)] of the interaction of small silver clusters (Ag n , n = 1?C4) with carbon monoxide we have found that the CO molecule can bond with the cluster either in a bent or in a linear configuration with respect to the silver carbon bond. These trends were explained by the interaction of the highest occupied molecular orbital (HOMO) of the cluster and the antibonding (?? ?) orbital, the lowest unoccupied molecular orbital (LUMO) of CO. For a ??-type orbital of the cluster the CO molecule is bent with respect to the Ag-C bond, while for a ??-type HOMO the CO molecule is aligned with respect to the Ag-C bond. These trends tend to maximize the overlap of the CO molecule??s LUMO with the cluster??s HOMO. Furthermore, the CO molecules have a tendency to bond atop an atom rather than on bridge or face sites. In the present work we extend the investigation to clusters of up to seven atoms. The focus of this paper is on the 7-atom silver cluster which shows interesting complexities in that the cluster is characterized by a ??-like HOMO but has the CO bonded to a waist atom of the pentagonal bi-pyramid and bent with respect to the Ag-C bond, thus breaking the previously observed trend. In this work we provide an analysis of the potential energy surface of the CO bonded to Ag7 and explain why the bonding differs from those of the smaller clusters. We find that the bonding is still explained by a ??-backdonation process. However, unlike the lowest size clusters there is an increase in overlap through bending and the complex prefers this conformation, rather than a linear Ag-C-O configuration.  相似文献   

5.
Recently, it was reported that cyclometalated iridium(III) complexes of 2-((E)-2-phenyl-1-ethenyl)quinoline (PEQ) and 1-((E)-2-phenyl-1-ethenyl)isoquinoline (PEIQ) emitted saturated red light with high quantum efficiency and brightness. However, the energy difference between specific wavelengths due to the metal-to-ligand charge transfer (3MLCT) absorption and emission spectra showed rather large Stokes shifts, which originated at the predominant 3(π–π1) ligand-based emission. In this paper, it is shown that these complexes are consistent with predominant 3(π–π1) ligand-based emission. To develop the predominant 3MLCT emission of Ir complexes for a highly efficient phosphorescent complex suitable for red OLED devices, proper ligands having a highest occupied molecular orbital (HOMO) energy level similar to that of 2-phenylpyridine (ppy) ligand were designed to lead to strong mixing between π-orbitals of ligands and the 5d orbital of the centric iridium atom. In order to decrease the HOMO energy level and the lowest an occupied molecular orbital (LUMO) level simultaneously to maintain the same HOMO–LUMO energy gap, an electron accepting group such as F or CF3 was introduced. By such manipulation of ligands in Ir complexes, it was theoretically possible to change the origin of emission in Ir complex from the predominant ligand-centered 3(π–π1) excited state to the predominant 3MLCT excited state.  相似文献   

6.
陈国栋  王六定  安博  杨敏 《物理学报》2009,58(13):254-S258
对闭口硼氮纳米管(BNNT)顶层掺碳体系,运用第一性原理研究了电子场发射性能.结果表明,掺碳的BNNT体系电子结构变化显著;外电场愈强,体系态密度向低能端移动幅度愈大,且最高占据分子轨道(HOMO)/最低未占据分子轨道(LUMO)能隙愈小.体系态密度和局域态密度,HOMO和LUMO及其能隙分析一致表明,各种碳掺杂体系中CeqBNNT的场发射性能最佳. 关键词: 硼氮纳米管 碳掺杂 第一性原理  相似文献   

7.
The electronic properties of an armchair (4,4) single-walled silicon carbide nanotube (SWSiCNT) with the length and diameter of 22.4 and 6.93 Å, respectively under different tensile strains are investigated by density functional theory (DFT) calculation. The change of highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO–LUMO) gap of the nanotube has been observed during the elongation process. Our results show that the gap will significantly decrease linearly with the increase of axial strain. Two different slopes are found before and after an 11% strain in the profiles of the HOMO–LUMO gap. The radial buckling has been performed to investigate the radial geometry of nanotube. The partial density of states (PDOS) of two neighboring Si and C atoms of the nanotube are further studied to demonstrate the strain effect on the electronic structure of SiC nanotube. The PDOS results exhibit that the occupied states of Si atom and the unoccupied states of C atom are red-shifted and blue-shifted under stretching, respectively. Mulliken charge analysis reveals that Si and C atoms will become less ionic under the larger strain. The electron differences of silicon carbide nanotube (SiCNT) on tensile loading are also studied.  相似文献   

8.
Porphyrin ( Pr ), porphycene ( Pc ), and [22]porphyrin(2.2.2.2) ( P[22] ) have been theoretically investigated. We design 2 highly conjugated macrocycles containing 4 pyrroles with different linkage bridges, which are named for 4 pyrrole ( Pf ) and methylene‐dipyrrolidine ( Pm ), as the theoretical model so as to investigate the stability, aromaticity, and photophysical behavior of these porphyrin derivatives, and the influence of getting or losing electron to the neutral molecule. The geometric structures of the molecules are optimized by density functional theory method. The absorptions are calculated by the time‐dependent density functional theory method. Based on the optimized structures, the nucleus‐independent chemical shifts (NICS) are calculated. The molecule with negative NICS value possesses larger highest occupied molecular orbital (HOMO)‐lowest occupied molecular orbital (LUMO) gap than that with positive NICS value, the molecule with bigger positive NICS value possesses smaller HOMO‐LUMO gap, and the molecule with bigger negative NICS value (in absolute value) possesses bigger HOMO‐LUMO gap. The current density indicates that the π‐electron delocalization is more effective in Pr and Pc than in Pf , Pm , and P[22] and corresponds to the stability of molecules. The absorptions of the molecules are all in the UV‐visible and infrared regions. The major transitions for most of the molecules are all from HOMO to LUMO. Compared with Pf 2? , Pr 2? , Pc 2? , and P[22] 2? , Pm 2? shows distinctive photophysical properties, which is due to the reduced HOMO‐LUMO gap, structural distortion, and strong antiaromaticity.  相似文献   

9.
A simple mechanism is proposed to explain the variation of electrical conductivity in polyazomethines. The results of semiempirical, all valence, molecular orbital calculations obtained from the PM3 method have been employed to arrive at the mechanism. The difference of energy (ΔE) between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) alone could not explain the variation in electrical conductivity; however, ΔE together with the LUMO electron density at the atoms that lie on the continuous chain could account for the electrical conductivity in these polymers. The LUMO electron density on these centers may be visualized as the carrier movement. In certain polymers there are intrinsic holes in HOMO. The movement of these intrinsic holes also adds to the electrical conduction. The polyazomethines are prepared by the condensation of diamines with azo bis-aldehydes. A few of these polymers were doped with silver nanoparticles. Many of the doped polymers showed substantial enhancement in conductivity. Strong polymer–dopant interaction, identified by IR spectroscopy, is proposed to be responsible for the increase in conductivity.  相似文献   

10.
外场下SnS分子结构及其特性   总被引:1,自引:0,他引:1       下载免费PDF全文
黄多辉  王藩侯  万明杰  蒋刚 《物理学报》2013,62(1):13104-013104
对S原子采用6-311++G**基组,Sn原子采用SDB-cc-pVTZ基组,利用密度泛函(B3P86)方法对SnS分子进行了基态结构优化,并研究了外场作用下SnS基态分子键长、能量、能级分布、电荷布居分布、谐振频率和红外谱强度的影响规律.然后利用含时密度泛函(TD-B3P86)方法研究了SnS分子在外场下的激发特性.结果表明,在所加的电场范围内(-0.04 a.u.-0.04 a.u.),随着正向电场的增大,分子键长和红外谱强度均是先减小后增大;总能E,SnS基态分子的最高已占据轨道能量EH和谐振频率均是先增大后减小;分子的最低未占空轨道能量EL和能隙Eg均随正向电场的增大而减小.随着正向电场的增大,SnS分子由基态至前9个单重激发态跃迁的波长增大,激发能则减小.  相似文献   

11.
Valence band photoemission spectroscopy (VB-PES) and inverse photoemission spectroscopy (IPES) were employed to determine the occupied and unoccupied density of states upon silver deposition onto layers of two phthalocyanines (H2Pc and CuPc). The two different Pc molecules give rise to very distinct behaviour already during the initial stage of silver deposition. While in the CuPc case no shift occurs in the energy levels, the H2Pc highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are shifting simultaneously by 0.3 eV, i.e., the HOMO shifts away from the Fermi level while LUMO shifts towards the Fermi level. As the silver quantity increases the HOMO levels of both Pcs are shifting towards the Fermi level. When the Fermi level is resolved in the VB spectra, the characteristic features of H2Pc and CuPc are smeared out to some extent. Shifts in HOMO and LUMO energy positions as well as changes in line shapes are discussed in terms of charge-transfer and chemical reactions at the interfaces.  相似文献   

12.
ABSTRACT

The lowest energy structure of Li15 cluster is a capped double centred square antiprism sharing a square face. Interestingly, when a lithium atom is substituted by a transition-metal atom TM (TM?=?Sc, Ti, V, Y, Zr, Nb, Hf, Ta and W), the lowest energy structure is found to be cage-like with a D6d symmetry, where the outer cage is composed by fourteen lithium atoms with an endohedral transition-metal atom. The unique structures are confirmed by CALYSPO structure prediction method code and density-functional theory calculations. Superatomic properties are confirmed in all the D6d clusters. Energy calculations predict that they are very stable, and their stability is further enhanced by the large gaps of the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO–LUMO gaps). Our findings offer potential applications in building blocks for assembling materials with superatoms.  相似文献   

13.
We investigate the electronic transport properties of silicon carbide nanotubes (SiCNT) in presence of both boron (B) and nitrogen (N) impurities. The results show that co-doping BN impurities suppresses the important negative differential resistance (NDR) property. NDR suppression is attributed to the introduction of new electronic states near the Fermi level followed by weak orbital localization. BN co-doping results in exponential current-voltage (I-V) characteristics which is in contrast to linear I-V characteristics for individual boron and nitrogen doped SiCNTs. HOMO has no contribution from B impurity, whereas, LUMO has contribution from N impurity at low and high bias.  相似文献   

14.
SnSe分子外场下的基态性质和激发态性质   总被引:1,自引:0,他引:1       下载免费PDF全文
王藩侯  黄多辉  杨俊升 《物理学报》2013,62(7):73102-073102
对Sn原子使用SDB-cc-pVTZ基组, Se原子采用6-311++G**基组, 利用密度泛函中的B3LYP方法研究了电场强度为-0.04–0.04 a.u.的外电场对SnSe基态分子的几何结构、 电荷布居分布、 HOMO能级、 LUMO能级、 能隙、 费米能级、 谐振频率和红外光谱强度的影响. 继而使用含时密度泛函(TD-B3LYP) 方法研究了SnSe分子在外场下的激发特性. 结果表明, 外电场的大小和方向对SnSe分子基态的这些性质有明显影响. 在所加的电场范围内(-0.04 a.u.–0.04 a.u.), 随着正向电场的增大, 核间距先减小后增大, 在F=0.03 a .u.时取得最小值0.2317 nm; 分子电偶极矩μ近似线性地增大; EL, EH、 费米能级EF和能隙Eg均减小. 随着正向电场逐渐增大, 分子总能量和谐振频率均先增大后减小; 红外谱强度则先减小后增大, 在F=0.03 a.u.时, 取得最小值 0.1138 km·mol-1. 由基态到第1–10个单重激发态的波长均随着正向电场的增大而增大. 激发能均随着正向电场的增大而减小. 电场的引入可改变SnSe分子激发态出现的顺序并使得一些禁止的跃迁变得可能. 关键词: SnSe 外电场 能隙 激发特性  相似文献   

15.
对闭口碳纳米管(CNT)顶端分层掺氮及吸附不同数目水分子体系,运用第一性原理研究了有电场存在时的电子场发射性能.结果表明:掺氮并吸附水分子的CNT结构稳定;外电场愈强、水分子数愈多,体系态密度(DOS)向低能端移动幅度愈大且最高分子占据轨道(HOMO)/最低分子空轨道(LUMO)能隙愈小.吸附能,DOS/LDOS,HOMO/LUMO及其能隙分析一致表明,第三层氮掺杂CNT吸附不同数目水分子体系的场发射性能最佳. 关键词: 氮掺杂 水吸附 密度泛函理论 电子场发射  相似文献   

16.
Corrosion inhibition by some new triazole derivatives on mild steel in 1 M hydrochloric acid solutions has been investigated by weight loss test, electrochemical measurement, scanning electronic microscope analysis and quantum chemical calculations. The results indicate that these compounds act as mixed-type inhibitors retarding the anodic and cathodic corrosion reactions and do not change the mechanism of either hydrogen evolution reaction or mild steel dissolution. The studied compounds following the Langmuir adsorption isotherm, and the thermodynamic parameters were determined and discussed. The effect of molecular structure on the inhibition efficiency has been investigated by ab initio quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, energy gap (LUMO-HOMO), dipole moment and molecular orbital densities were calculated.  相似文献   

17.
Highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) tuning is an important consideration in the development of organic‐based semiconducting materials. A study of the specific effects and overall trends for the HOMO–LUMO tuning of a diverse series of 9‐fluorenones by means of extended conjugation and substituent effects is described. Trends were explored in a range of compounds, beginning with structures having highly electron‐withdrawing substituents and progressing to structures having highly electron‐donating substituents. Compounds with an incremental increase in conjugation were also examined. Electrochemical and optical measurements were used to calculate the HOMO–LUMO levels and HOMO–LUMO bandgap (HLG) for each structure. Results from both methods were compared and correlated with the differences in molecular structure. Increasing the electron‐donating character of the substituents was observed to decrease the HLG and increase the energy levels of the HOMO and the LUMO, whereas an increase in the electron‐withdrawing character produced the opposite results. Increasing conjugation decreased the HLG, increased the HOMO energy level, but decreased the LUMO energy level. Spectroscopic evidence of substituent influence on the carbonyl suggests that substituents directly impact the HLG by influencing the availability of nonbonding electrons within the carbonyl, which impacts the probability of an nπ* transition. The data presented not only elaborate on the HOMO–LUMO tuning of 9‐fluorenone systems but also enable the consideration of 9‐fluorenones as analogous models for HOMO–LUMO tuning in other more complex polyaromatic systems such as bifluorenylidenes. These trends may provide insight into developing materials with specifically tuned HLGs and HOMO–LUMO levels for a variety of applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Ling Yi 《Journal of luminescence》2011,131(10):2083-2088
This paper studied poly[(3,6-di-tert-butyl-N-hexadecyl-1,8-carbazolylene) butadiynylene] (P1), butadiynylene-linked poly (3,6-carbazole) (P2) and butadiynylene-linked poly (2,7-carbazole) (P3) through the theoretical measurements with Gaussian 03 program package. To investigate the relationship between structures and properties of these multifunctional electroluminescent materials, their geometrical structures of ground and excited-states were optimized by B3LYP/6-31G (d) and CIS/6-31G (d) methods, respectively. The lowest excitation energies (Eg's), and the maximum absorption and emission wavelengths of these polymers were calculated by time-dependent density functional theory methods (TD-DFT). The important parameters for luminescent materials were also predicated including the ionization potentials (Ip's) and electron affinities (Ea's). The calculated results show that the highest-occupied molecular orbital (HOMO) energies lift about 0.27-0.49 eV compared to N,N′-bis(naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB), suggesting the significant improved hole-accepting and transporting abilities. In addition, substitution of alkyne for carbazole resulted in a narrow band gap and a red shift of both the absorption and emission peaks. Through above calculations, it is evidenced that these polymers can be considered as candidates for excellent OLEDs with good hole-creating abilities and high blue-light emission.  相似文献   

19.
The structural, electronic and magnetic properties of small gallium clusters doped with Cobalt have been studied using spin-polarised density functional theory. The binding energy per atom, second-order differences of total energies and fragmentation energies of equilibrium geometries of the host Gan+1 and doped GanCo (n = 1–12) clusters are computed. Doped clusters are found to be more stable than pure Ga clusters; Ga3Co, Ga5Co and Ga8Co clusters are exceptionally stable. Doping with Co changes the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO–LUMO) gap, and also affects the magnetic moments of clusters.  相似文献   

20.
Accurate determination of both fundamental and optical gap is necessary for designing molecules relevant for organic photovoltaics. Here, we study how range-separated density functionals reproduce frontier orbital energies, HOMO (highest occupied molecular orbital)–LUMO (lowest unoccupied molecular orbital) gaps, and optical gaps for molecules relevant for organic photovoltaics. In this study, we consider 12 different range-separated density functional for computing HOMO energy, HOMO–LUMO gap, and optical gap which are compared with available experimental and reported GW values. We found that the reproduction of desired photovoltaic properties primarily depend on range separation parameter. Moreover, the tested functionals are comparable with OT-BNL functional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号