首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
Mixtures of the anionic surfactants sodium dodecyl sulfate (SDS) and sodium dodecanoate (SDoD) were investigated regarding their ability to bind to a hydrophilic nonionic polymer, polyethylene oxide (PEO). By electrical conductivity measurements, the parameters with respect to the onsets of surfactant aggregation were determined in the presence of 0.06 M PEO (critical aggregation concentration) and in its absence (critical micelle concentration). It was found that both plots of these parameters for the multicomponent mixtures against molar fraction of SDoD showed an ideal mixing behavior. The same technique was used to estimate the degree of ionization as a fundamental parameter relating to the interfacial composition of mixed aggregates. In addition, in order to monitor changes in polymer-surfactant structures, we used steady-state quenching fluorescence measurements to characterize the sizes of PEO-SDS/SDoD complexes at different compositions of the complex mixture. Copyright 1999 Academic Press.  相似文献   

2.
The interactions of bovine serum albumin (BSA) with the anionic surfactant sodium decylsulfonate (C10SO3), the cationic surfactant decyltriethylammonium bromide (C10NE) and equimolarly mixed cationic-anionic surfactants C10NE-C10SO3 were investigated by surface tension, viscosity, dynamic light scattering (DLS) and circular dichroism (CD). It was shown that the single ionic surfactant C10SO3 or C10NE has obvious interaction with BSA. The presence of C10SO3 or C10NE modified BSA structure. However, the equimolarly mixed cationic-anionic surfactants C10NE-C10SO3 showed very weak interactions with BSA. The surface tension-log concentration (gamma-logC) plot for the aqueous solutions of C10NE-C10SO3/BSA mixtures coincided with that of C10NE-C10SO3 solutions. Viscometry showed that there is no significant change in the rheological properties for the C10NE-C10SO3/BSA mixed solutions. DLS showed that BSA monomers and mixed aggregates of C10NE-C10SO3 existed in the C10NE-C10SO3/BSA mixed solutions. From CD spectra no obvious modification of BSA structure in the presence of C10NE-C10SO3 mixtures was observed. The weak interactions between BSA and C10NE-C10SO3 might be explained in terms of the very low critical micelle concentration (cmc) of C10NE-C10SO3 mixtures that made the concentration of ionic surfactant monomers much lower than that needed for inducing the modification of BSA structure. In other words, the very strong synergism between oppositely charged cationic and anionic surfactants makes the formation of cationic-anionic surfactant mixed aggregates in the bulk solution a more favorable process than binding to proteins.  相似文献   

3.
We have examined the polymer-surfactant interaction in mixed solutions of the cationic surfactants, i.e., dodecyltrimethylammonium chloride, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, tetradecyltriphenylphosphonium bromide, and tetradecylpyridinium bromide and a semiflexible anionic polyelectrolyte carboxymethylcellulose in water and aqueous salt solutions by various techniques: tensiometry, viscosimetry or ion-selective electrode method, and dynamic light scattering. We have investigated the effect of varying surfactant chain length, head group size, counterion, and ionic strength on the critical aggregation concentration (CAC) of mixed polymer surfactant systems and the collapse of the polymer molecule under different solution conditions. The CAC decreases with increasing alkyl chain length. Above a certain surfactant concentration, mixed aggregates start growing until their macroscopic phase separation. The growth is more rapid with greater surfactant tail length and with increasing head group size. This is attributed in both cases to the increasing hydrophobic interaction between polymer and surfactant. Among surfactants with monovalent halide counterions, iodide induces the strongest binding, reflected by the onset of growth of the mixed aggregates at low surfactant concentration. This is perhaps related to the decreasing hydration of the counterion from chloride to iodide. The surfactant concentration at which the viscosity of the solution starts to decrease sharply is smaller than the CAC, and probably reflects polymer chain shrinkage due to noncooperative binding.  相似文献   

4.
Measurements of counterion binding in mixtures of surfactant aqueous solutions have been performed to study the structure of the anionic/cationic mixed micelle/solution interface. The mixtures studied were SDS/DDAC and STS/TDPC. The binding of chloride and sodium ions to mixed anionic/cationic micelles was measured using ion-specific electrodes. Counterion binding was found to be strongly dependent on the molar ratio of surfactants present. The mixed micelle/solution interface includes the headgroups of both surfactants and counterions of surfactant in excess. The addition of oppositely charged surfactant caused an increasing dissociation of counterions.  相似文献   

5.
The structure of aggregates formed by eight surfactant [Ru(bipy)2(p,p'-dialkyl-2,2'-bipy)]Cl2 complexes-which we express as Ru(p)(q)Cn, where n (=12 or 19) is the alkyl chain length, p (=4 or 5) refers to the substitution position on the bipyridine ligand, and q (=1 or 2) is the number of substituted alkyl chains-in aqueous solutions has been examined using small-angle neutron scattering for a range of concentrations close to the critical micelle concentration and for several combinations of n, p, and q. A number of general results emerge. The double-chain surfactants possess a smaller headgroup charge but a larger aggregate size than their single-chain analogues. Over the concentration range studied, the micelles of the single-chain surfactants grow as the concentration is increased, whereas for the double-chain systems, the aggregate size remains unchanged. For both single- and double-chain surfactants, an increase in alkyl chain length is accompanied by an expected increase in aggregate size and an increase in average headgroup charge. The aggregates formed in solutions of resolved double-chain complexes are larger than those found in solutions of racemic mixtures. The Ru(4)(1)C12 and Ru(5)(1)C12 systems form aggregates with high water content. Variation of the substitution position for the single-chain surfactants produces dramatic changes in the structure of the micelles. The aggregates formed in solutions of Ru(4)(1)C19 and Ru(5)(1)C19 display particularly different structures. The Ru(4)(1)C19 system forms essentially spherical aggregates. In contrast, in the Ru(5)(1)C19 system, wormlike aggregates are formed in which the rigid rodlike sections appear to undergo a transition from a noninterdigitated to an interdigitated structure as the concentration is increased. For double-chain surfactants, the aggregation number for p = 4 surfactants is considerably larger than that for p = 5 surfactants.  相似文献   

6.
The interaction has been studied in aqueous solutions between a negatively charged conjugated polyelectrolyte poly{1,4-phenylene-[9,9-bis(4-phenoxybutylsulfonate)]fluorene-2,7-diyl} copolymer (PBS-PFP) and several cationic tetraalkylammonium surfactants with different structures (alkyl chain length, counterion, or double alkyl chain), with tetramethylammonium cations and with the anionic surfactant sodium dodecyl sulfate (SDS) by electronic absorption and emission spectroscopy and by conductivity measurements. The results are compared with those previously obtained on the interaction of the same polymer with the nonionic surfactant C12E5. The nature of the electrostatic or hydrophobic polymer-surfactant interactions leads to very different behavior. The polymer induces the aggregation with the cationic surfactants at concentrations well below the critical micelle concentration, while this is inhibited with the anionic SDS, as demonstrated from conductivity measurements. The interaction with cationic surfactants only shows a small dependence on alkyl chain length or counterion and is suggested to be dominated by electrostatic interactions. In contrast to previous studies with the nonionic C12E5, both the cationic and the anionic surfactants quench the PBS-PFP emission intensity, leading also to a decrease in the polymer emission lifetime. However, the interaction with these cationic surfactants leads to the appearance of a new emission band (approximately 525 nm), which may be due to energy hopping to defect sites due to the increase of PBS-PFP interchain interaction favored by charge neutralization of the anionic polymer by cationic surfactant and by hydrophobic interactions involving the surfactant alkyl chains, since the same green band is not observed by adding either tetramethylammonium hydroxide or chloride. This effect suggests that the cationic surfactants are changing the nature of PBS-PFP aggregates. The nature of the polymer and surfactant interactions can, thus, be used to control the spectroscopic and conductivity properties of the polymer, which may have implications in its applications.  相似文献   

7.
The aggregation behavior of catanionics formed by the mixture of cationic geminis derived from dodecyltrimethylammonium chloride (DTAC) and anionic sodium dodecylsulfate (SDS) was studied by means of phase studies and comprehensive small-angle neutron scattering (SANS) experiments at 25 °C and 50 mM overall concentration. The results are compared to those for the previously studied SDS + DTAC system. Various gemini spacers of different natures and geometries were used, but all of them had similar lengths: an ethoxy bridge, a double bond, and an aromatic ring binding the two DTACs in three different substitutions (ortho, meta, and para). SANS and SAXS data analysis indicates that the spacer has no large effect on the spheroidal micelles of pure surfactants formed at low concentration in water; however, specific effects appear with the addition of electrolytes. Microstructures formed in the catanionic mixtures are rather strongly dependent on the nature of the spacer. The most important finding is that for the hydrophilic, flexible ethoxy bridge, monodisperse vesicles with a fixed anionic/cationic charge ratio (depending only on the surfactant in excess) are formed. Furthermore, the composition of these vesicles shows that strongly charged aggregates are formed. This study therefore provides new opportunities for developing tailor-made gemini surfactants that allow for the fine tuning of catanionic structures.  相似文献   

8.
The combined effect of salt (10 mmol L(-1)) and surfactants on the sorption of the fluorescent brightener 4,4'-distyrylbiphenyl sodium sulfonate (Tinopal CBS) onto modified cellulose fibers was studied. Sorption efficiencies with both cationic and anionic surfactants were evaluated. Emission spectroscopy was used for quantitative analysis since Tinopal has an intense fluorescence. The sorption efficiency of the brightener is greater for solutions containing a cationic surfactant (DTAC) below the critical micelle concentration (cmc), while for an anionic surfactant (SDS) above its cmc the efficiency is greater. The profile of the sorption isotherms were interpreted in terms of the evolution of surfactant aggregation at the fiber/solution interface. Salt influences the efficiency of the Tinopal sorption on the modified cellulose fibers either because it decreases the cmc of the surfactants or because the ions screen the surface charges of the fiber which decreases the electrostatic interaction among the charged headgroup of the surfactant and the charged fiber surface.  相似文献   

9.
The interaction of mixed surfactants with polyelectrolytes   总被引:2,自引:0,他引:2  
The interactions between a linear polymer, sodium poly(2-acrylamide-2-methylpropane sulfonate), and two cationic surfactants, dodecylpyridinium chloride and tetradecylpyridinium chloride and their mixtures with different ratios, were studied by a potentiometric titration method using a surfactant-selective electrode. The ideal mixing/ideal cooperative binding model we had proposed previously was applied to successfully predict the binding isotherms of the mixed surfactant systems and the critical aggregation concentrations of the binding. The binding of surfactant mixtures to polymers is similar to the ideal mixed micelle formation and a sort of synergetic effect was found during the binding process. Received: 18 August 1998 Accepted in revised form: 6 November 1998  相似文献   

10.
The interaction of sodium N-lauroylsarcosinate (SLS) with N-cetylpyridinium chloride (CPC) and N-dodecylpyridinium chloride (DPC) was investigated in aqueous mixtures. A strong interaction between the anionic and cationic surfactants was observed. The interaction parameter, β was determined for a wide composition range and was found to be negative. The mixed systems were found to have much lower critical micelle concentration (cmc) and surface tension at cmc. The surfactant mixtures exhibit synergism in the range of molar fractions investigated. The self-assembly formation in the mixtures of different compositions and total concentrations were studied using a number of techniques, including surface tension, fluorescence spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), confocal fluorescence microscopy (CFM). Thermodynamically stable unilamellar vesicles were observed to form upon mixing of the anionic and cationic surfactants in a wide range of composition and concentrations in buffered aqueous media. TEM as well as DLS measurements were performed to obtain shape and size of the vesicular structures, respectively. These unilamellar vesicles are stable for periods as long as 3 months and appear to be the equilibrium form of aggregation. Effect of pH, and temperature on the stability was investigated. The vesicular structures were observed to be stable at pH as low as 2.0 and at biological temperature (37°C). In presence of 10 mol% of cholesterol the mixed surfactant vesicles exhibited leakage of the encapsulated calcein dye, showing potential application in pH-triggered drug release.  相似文献   

11.
The effect of TbCl3 on the aggregation processes of the anionic surfactants sodium decyl sulfate (SDeS) and sodium dodecyl sulfate (SDS) has been investigated. Electrical conductivity data, combined with Tb(III) luminescence measurements suggest that the formation of micelles involving TbCl3 and SDS occurs at concentrations below the critical micelle concentration (cmc) of the pure surfactants; the formation of these mixed aggregates was also monitored by light scattering, which indicates that the addition of TbCl3 to surfactant concentration at values below the pure surfactant cmc results in a much greater light scattering than that found with pure sodium alkylsulfate surfactant micelles. This phenomenon is dependent upon the alkyl chain length of the surfactant. With Tb(III)/DS-, complexes are formed with a cation/anion binding ratio varying from 3 to 6, which depends upon the initial concentration of Tb(III). This suggests that the majority of the cation hydration water molecules can be exchanged by the anionic surfactant. When the carbon chain length decreases, interactions between surfactant and Tb(III) also decrease, alterations in conductivity and fluorescence data are not so significant and, consequently, no binding ratio can be detected even if existing. The surfactant micellization is dependent on the presence of electrolyte in solution with apparent cmc being lower than the corresponding cmc value of pure SDS.  相似文献   

12.
The modification of surfaces of solid-state potentiometric surfactant sensors with nanofiltration membranes (molecular sieves) with different diameters allows the detection of homologues of anionic, cationic, and nonionic surfactants. The quantitative characteristics of the membrane transport (permeability and ion flow) and the separating ability of plasticized polyvinyl chloride molecular sieves are evaluated. The permeabilities of nanofiltration membranes and ion flows through them depend on the nature of the blowing agent and the nature and concentration of the surfactants in the contacting solutions whose variation allows the separation of homologues of sodium alkyl sulfates, alkylpyridinium chlorides, and polyethoxylated nonylphenols in multicomponent mixtures.  相似文献   

13.
两性离子甜菜碱表面活性剂(SB3-12)胶束具有较好的生物相容性,由于相反电荷的极性头之间具有静电中和作用,胶束表面具有小的负电荷密度。当加入阴离子的十二烷基硫酸钠(SDS)以后,负离子SD-与SB3-12胶束极性区内层季铵正电荷的静电中和作用,能连续地调节胶束表面磺酸基的负电荷密度,这有利于对药物分子的选择性增溶和调节在生理条件下的药物的输送。等温滴定量热(ITC)研究发现SB3-12和SDS有强的协同效应,混合临界胶束浓度(CMC)和胶束化焓明显降低,并得到两者协同效应的弱静电作用机理。当模型药物分子芦丁(Rutin)与SB3-12/SDS混合胶束作用时,芦丁7位羟基的氢解离后的阴离子与SDS共同作用于SB3-12形成混合胶束。UV-Vis吸收光谱和~1H NMR谱研究发现,在SB3-12胶束中,芦丁分子的A环位于季铵阳离子附近,B环位于两个相反电荷之间的弱极性区域。在SDS胶束中,B环位于栅栏层,而A环和二糖暴露于水相侧。在混合胶束中,随着SDS摩尔分数增加,对A环的静电吸引变弱。离子表面活性剂对两性离子表面活性剂胶束表面电荷密度的调节作用,本质上是对胶束极性区域的物理及化学性质的微调,进而实现对药物的可控增溶。  相似文献   

14.
Surfactants of practical interest are invariably mixtures of different types. In this study, mixtures of sugar-based n-dodecyl-beta-D-maltoside with cationic dodecyltrimethylammonium bromide, anionic sodium dodecylsulfate, and nonionic pentaethyleneglycol monododecyl ether in solution, with and without supporting electrolyte, have been studied using surface tension and fluorescence spectroscopic techniques. Interaction parameters and mole fraction of components in mixed micelles were calculated using regular solution theory. The magnitude of interactions between n-dodecyl-beta-D-maltoside and other surfactants followed the order anionic/nonionic > cationic/nonionic > nonionic/nonionic mixtures. Since all surfactants have the same hydrophobic groups, strengths of interactions are attributed to the structures of hydrophilic headgroups. Electrolyte reduced synergism between n-dodecyl-beta-D-maltoside and ionic surfactant due to charge neutralization. Industrial sugar-based surfactant, dodecyl polyglucoside, yielded results similar to that with dodecyl maltoside, implying that tested commercial alkyl polyglucosides are similar to the pure laboratory samples in synergistic interactions with other surfactants. Fluorescence study not only supported the cmc results using tensiometry, but showed that interfaces of all the above mixed micelle/solution interfaces are mildly hydrophobic. Based on these results, an attempt is made to discover the nature of interactions to be a combination of intermolecular potential energies and free energy due to packing of surfactant molecules in micelles.  相似文献   

15.
The interactions of non-ionic surfactant Triton X-100 and the coat protein of tobacco mosaic virus, which is an established model for both ordered and non-ordered protein aggregation, were studied using turbidimetry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. It was found that at the critical aggregation concentration (equal to critical micelle concentration) of 138 x 10(-6) M, Triton X-100 induces partial denaturation of tobacco mosaic virus coat protein molecules followed by protein amorphous aggregation. Protein aggregation has profound ionic strength dependence and proceeds due to hydrophobic sticking of surfactant-protein complexes (start aggregates) with initial radii of 46 nm. It has been suggested that the anionic surfactant sodium dodecyl sulfate forms mixed micelles with Triton X-100 and therefore reverses protein amorphous aggregation with release of protein molecules from the amorphous aggregates. A stoichiometric ratio of 5 was found for Triton X-100-sodium dodecyl sulfate interactions.  相似文献   

16.
The properties of anionic-rich and cationic-rich mixtures of CTAB (cetyltrimethylammonium bromide) and SDS (sodium dodecyl sulfate) were investigated with conductometry and surface tension measurements and by determining the surfactant NMR self-diffusion coefficients. The critical aggregate concentration (CAC), surface tension reduction effectiveness(gamma(CAC)), surface excess(Gamma(max)), and mean molecular surface area (A(min)) were determined from plots of the surface tension (gamma) as a function of the total surfactant concentration. The compositions of the adsorbed films (Z) and aggregates (chi) were estimated by using regular solution theory, and then the interaction parameters in the aggregates (beta) and the adsorbed film phases (beta(sigma)) were calculated. The results showed that the synergism between the surfactants enhances the formation of mixed aggregates and reduces the surface tension. Further, the nature and strength of the interaction between the surfactants in the mixtures were obtained by calculating the values of the following parameters: the interaction parameter, beta, the size parameter, rho, and the nonrandom mixing parameter, P*. These results indicate that in ionic surfactant mixtures the optimized packing parameter has the highest value and that the size parameter can be used to account for deviations from the predictions of regular solution theory. It was concluded that, for planar air/aqueous interfaces and aggregation systems, this nonideality increases as the temperature increases. This trend is attributed to the increased dehydration of the surfactant head groups that results from increases in temperature. Further, our conductometry measurements show that the counterion binding number of mixed micelles formed in mixtures with a high CTAB content is different to those with a high SDS content. This difference is due to either their different aggregation sizes or the different interactions between the head groups and the counterions.  相似文献   

17.
Cyclic voltammetry (CV) and viscosity measurements have been employed to study the aggregation behavior of mixed micellar systems of anionic surfactant (dioctyl sulfosuccinate sodium salt, AOT) with conventional nonionic surfactants such as Brij 35/TritonX-100/Tween 20/Tween 80/Myrj 45 and two triblock copolymers (L64 and F68). Critical micelle concentration (cmc) values have been determined for various micellar systems from CV measurements using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as an electroactive probe at 25 °C. Diffusion coefficient (D) has been evaluated from Randles–Sevcik equation which showed an overall decrease for most of the binary systems. The negative values of interaction parameters (β) obtained from regular solution theory suggest the synergistic behavior in all the binary systems except AOT + Tween 80 mixtures. The mixed systems of AOT with triblock copolymers showed stronger synergistic interactions than that of mixed systems of AOT with nonionic surfactants. A comparative evaluation of mixed systems of anionic surfactants AOT and sodium dodecyl sulfate with Myrj 45 and AOT + L64 and F68 has been made on the basis of different micellar parameters and structural properties of surfactants. Viscosity measurements also show similar type of interactions in the mixed micelles.  相似文献   

18.
Several experimental techniques (conductivity, zeta potential, transmission electronic microscopy, and steady-state fluorescence spectroscopy) have been used to study the formation of mixed colloidal aggregates consisting of a cationic double-chain surfactant, di-dodecyldimethylammonium bromide (di-C12DMAB), and a single-chain alkyltrimethylammonium bromide with 10 and/or 14 carbon atoms (decyltrimethylammonium bromide, C10TAB, and/or tetradecyltrimethylammonium bromide, C14TAB). Special interest has been devoted to the prevesicle domain, within which the formation of aggregated nanostructures was first reported in our laboratory. For that purpose, studies have been carried out on the very dilute region by means of conductivity experiments, confirming the existence of two critical aggregation concentrations in that concentration domain: the so-called mixed critical aggregate concentration, CAC, and the mixed critical vesicle concentration, CVC. By carrying out TEM experiments on negatively stained samples, we were surprised to find a number of aggregates without a clear aggregation pattern and with a variety of sizes and shapes at concentrations below CAC, where only monomers were expected. However, the nanoaggregates found at concentrations between CAC and CVC, also by TEM microscopy, show a clear and ordered "fingerprint"-like aggregation pattern similar to the liquid-crystalline phases reported for DNA-liposome complexes and/or DNA packed with viral capsids. Finally, at total surfactant concentrations above CVC, the aggregates were confirmed, by means of cryo-TEM micrographs and zeta potential measurements, to be essentially unilamellar spherical vesicles with a medium polydispersity and a net-averaged surface density charge of around 12 x 10(-3) C m(-2). The fluorescence emission of two probes, TNS (anionic) and PRODAN (nonionic), allows for the analysis of the micropolarity and microviscosity of the different microenvironments present in aqueous surfactant solutions where the above-mentioned vesicle and prevesicle aggregates are present.  相似文献   

19.
Phase behavior of cationic/anionic surfactant mixtures of the same chain length (n=10, 12 or 14) strongly depends on the molar ratio and actual concentration of the surfactants. Precipitation of catanionic surfactant and mixed micelles formation are observed over the concentration range investigated. Coacervate and liquid crystals are found to coexist in the transition region from crystalline catanionic surfactant to mixed micelles.The addition of oppositely charged surfactant diminishes the surface charge density at the mixed micelle/solution interface and enhances the apparent degree of counterion dissociation from mixed micelles. Cationic surfactants have a greater tendency to be incorporated in mixed micelles than anionic ones.  相似文献   

20.
We have examined the polymer/surfactant interaction in mixed aqueous solutions of cationic surfactants and anionic polyelectrolytes combining various techniques: tensiometry, potentiometry with surfactant-selective electrodes, and viscosimetry. We have investigated the role of varying polymer charge density, polymer concentration, surfactant chain length, polymer backbone rigidity, and molecular weight on the critical aggregation concentration (Cac) of mixed polymer/surfactant systems. The Cac of these systems, estimated from tensiometry and potentiometry, is found to be in close agreement. Different Cac variations with polymer charge density and surfactant chain length were observed with polymers having persistence lengths either smaller or larger than surfactant micelle size, which might reflect a different type of molecular organization in the polymer/surfactant complexes. The surfactant concentration at which the viscosity starts to decrease sharply is different from the Cac and probably reflects the polymer chain shrinkage due to surfactant binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号