首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 809 毫秒
1.
李林辉  吴金丹  王洪霞  高长有 《化学学报》2009,67(24):2867-2874
通过表面引发的原子转移自由基聚合在硅片表面制备了聚(N-异丙基丙烯酰胺)(PNIPAAm)聚合物刷。用原子力显微镜(AFM)分别研究了PNIPAAm的接枝动力学、温度和溶剂性质对厚度的影响以及PNIPAAm链与原子力针尖间的粘附力。结果表明,PNIPAAm链在硅片表面的生长具有很好的可控性。常温下厚度为33nm的PNIPAAm膜在水溶液中的增加到82.4nm;而在甲醇/水(v/v,1:1)溶液中,PNIPAAm分子链处于坍塌收缩状态,厚度降低为45nm;在55℃下干燥所得厚度则仅为22nm。力-距离测量结果表明,在溶液中,PNIPAAm链与原子力针尖之间的粘附力远小于在干态下的粘附力。用石英晶体微天平(QCM-D)对PNIPAAm的可逆相转变进行了研究,结果表明PNIPAAm分子链随温度变化的构象转变是发生在30-34℃之间的连续过程。  相似文献   

2.
In this paper, we describe the construction and characteristics of thermoresponsive, thin nanostructured films prepared by layer-by-layer sequential assembly of chitosan-graft-NIPAAm and alginate. FTIR and (1)H NMR spectra have confirmed the introduction of NIPAAm moieties onto the chitosan backbone. The LCST of the synthesized copolymer was found to be around 31-33 °C. The formation of the polyelectrolyte multilayers containing the copolymer and alginate was followed in situ by quartz crystal microbalance with dissipation monitoring technique and ex situ by UV-vis measurements. Our results revealed the linear increase of the multilayer film growth and the influence of the presence of salt. Moreover, AFM analysis has confirmed that PNIPAAm is able to reconform upon temperature swaps even when combined with other layers in a polyelectrolyte multilayer, demonstrating that the nanoassemblies are thermoresponsive. Preliminary results showed that, upon reducing culture temperature below PNIPAAm LCST, a gradual detachment of cell sheets from these PNIPAAm-based coatings has occurred.  相似文献   

3.
Given its biocompatibility, elasticity, and gas permeability, poly(dimethylsiloxane) (PDMS) is widely used to fabricate microgrooves and microfluidic devices for three-dimensional (3D) cell culture studies. However, conformal coating of complex PDMS devices prepared by standard microfabrication techniques with desired chemical functionality is challenging. This study describes the conformal coating of PDMS microgrooves with poly(N-isopropylacrylamide) (PNIPAAm) by using initiated chemical vapor deposition (iCVD). These microgrooves guided the formation of tissue constructs from NIH-3T3 fibroblasts that could be retrieved by the temperature-dependent swelling property and hydrophilicity change of the PNIPAAm. The thickness of swollen PNIPAAm films at 24 °C was approximately 3 times greater than at 37 °C. Furthermore, PNIPAAm-coated microgroove surfaces exhibit increased hydrophilicity at 24 °C (contact angle θ = 30° ± 2) compared to 37 °C (θ = 50° ± 1). Thus PNIPAAm film on the microgrooves exhibits responsive swelling with higher hydrophilicity at room temperature, which could be used to retrieve tissue constructs. The resulting tissue constructs were the same size as the grooves and could be used as modules in tissue fabrication. Given its ability to form and retrieve cell aggregates and its integration with standard microfabrication, PNIPAAm-coated PDMS templates may become useful for 3D cell culture applications in tissue engineering and drug discovery.  相似文献   

4.
Using surface initiated atomic transfer radical polymerization (ATRP) and an injection method, a poly(N-isopropylacrylamide)-b-poly(acrylic acid)-g-RGD (PNIPAAm-b-PAA-g-RGD) gradient surface was prepared. First, a thermoresponsive surface with a constant thickness of PNIPAAm was fabricated, onto which the AA monomers were block copolymerized using the PNIPAAm macromolecules as initiators. During this process, a continuous injection method was employed to yield a molecular weight gradient of PAA on the underlying uniform PNIPAAm layer. RGD peptide was finally covalently immobilized onto the PAA gradient by carbodiimide chemistry. In vitro culture of HepG2 cells showed that immobilization of the RGD peptide could accelerate cell attachment, while the thermoresponsive layer beneath could effectively release the cells by simply lowering temperature. Thus, the PNIPAAm-b-PAA-g-RGD gradient surface, combining the thermal response with cell affinity properties, can well regulate the cell adhesion and detachment, which may thus be useful for investigation of cell-substrate interactions with a smaller number of samples.  相似文献   

5.
Thermoresponsive poly(N-isopropylacrylamide) (P(NIPAAm))-grafted polycaprolactone (PCL) films with a suitable amount of immobilized cell-adhesive collagen were prepared to improve cell adhesion and proliferation above the lower critical solution temperature (LCST, 32°C) of P(NIPAAm) without destroying cell detachment properties at lower temperatures. Covalently tethered P(NIPAAm) brushes on PCL film surfaces were first prepared via surface-initiated atom transfer radical polymerization (ATRP). The alkyl bromide end groups of the grafted P(NIPAAm) brushes were used in nucleophilic substitution reactions for the direct coupling of collagen to produce the collagen-immobilized thermoresponsive PCL surface. At 37°C, the cell attachments on the collagen-immobilized thermoresponsive PCL surface were enhanced substantially. The attached cells could be recovered simply by lowering culture temperature. The P(NIPAAm)-grafted PCL films with immobilized collagen are potentially useful as adhesion modifiers for advanced cell culture and tissue engineering applications.  相似文献   

6.
A novel biodegradable diblock copolymer, poly(L-cysteine)-b-poly(L-lactide) (PLC-b-PLLA), was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of beta-benzyloxycarbonyl-L-cysteine (ZLC-NCA) with amino-terminated poly(L-lactide) (NH 2-PLLA) as a macroinitiator in a convenient way. The diblock copolymer and its precursor were characterized by (1)H NMR, Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS) measurements. The length of each block polymer could be tailored by molecular design and the ratios of feeding monomers. The cell adhesion and cell spread on the PZLC-b-PLLA and PLC-b-PLLA films were enhanced compared to those on pure PLA film. PLC-b-PLLA can self-assemble to form micelles in aqueous media. A pyrene probe is used to demonstrate the micelle formation of PLC-b-PLLA in aqueous solution. Due to the ease of disulfide exchange with thiols, the obtained micelles are reversible shell cross-linked (SCL) micelles. The morphology and size of the micelles are studied by dynamic light scattering (DLS) and environmental scanning electron microscopy (ESEM).  相似文献   

7.
Layer-by-layer self-assembly was used to prepare thermoresponsive thin films of poly(N-isopropylacrylamide) (PNIPAAm) and poly(acrylic acid) (PAA) based on hydrogen bonding. The temperature of PNIPAAm adsorption was shown to significantly affect both the mass proportion of PNIPAAm in the film and the film surface morphology. When the adsorption was conducted at temperatures close to the lower critical solubility temperature of PNIPAAm, the amount of PNIPAAm in the film increased significantly (from 51 to 59%), and the total film mass increased by 30-40%. The films prepared at 30 degrees C also exhibited a lower surface roughness (1-2 nm) compared with 5-8 nm when prepared at 10 or 21 degrees C. The resulting multilayer films ([PAA/PNIPAAm]10) were capable of being reversibly loaded and unloaded with dye (Rhodamine B) by exposure to solutions at elevated temperatures. The rate of loading and release was shown to depend on both the solution temperature and film preparation temperature, leading to tunable loading/release properties.  相似文献   

8.
Particles with an internal structure have been found in dilute water solutions of a triblock copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), which has short hydrophilic PEO endblocks compared to the central hydrophobic PPO block (EO5PO68EO5, L121). The properties of the block copolymer particles (i.e., their structure, size, and time stability) have been investigated using cryogenic transmission electron microscopy (cryo-TEM) in combination with dynamic light scattering (DLS) and turbidity measurements. The particles were formed in dilute solutions by quenching the temperature to temperatures where the reversed hexagonal phase is in equilibrium with a solution of unaggregated L121 copolymers (L1). From the DLS measurements, a mean hydrodynamic radius of 158 nm was extracted. The time-scan turbidity measurements were found to be unchanged for about 46 h. At higher copolymer concentrations, a reversed hexagonal phase (H2) exists in the L121/water system. SAXS was used to investigate the internal structure of the dispersed L121-based particles containing 15 wt % L121. It was found that the internal structure transforms from H2 to an inverse micellar system (L2) as the temperature increases from 37 to 70 degrees C.  相似文献   

9.
In this work, we report a gas-phase polymerization approach to create end-grafted vinyl based polymer films on silicon oxide based substrates. The "surface-initiated vapor deposition polymerization" (SI-VDP) of vaporized vinyl monomers, via the nitroxide-mediated free radical polymerization mechanism, was developed to fabricate various homo- and block copolymer brushes from surface-bound initiators, 1-(4'-oxa-2'-phenyl-12'-trimethoxysilyldodecyloxy)-2,2,6,6-tetra-methylpiperidine ("TEMPO"). The resulting polymer thin films were characterized by the Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and contact angle goniometry, respectively, to identify the surface composition, film thickness, surface coverage, and water contact angles. Through the SI-VDP, end-grafted polymer films of polystyrene (PSt), poly(acrylic acid) (PAAc), poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA), and poly(N-isopropylacrylamide) (PNIPAAm) with 10-200 nm thicknesses were fabricated. Furthermore, the block copolymer films of PAAc (1st block)-b-PSt (2nd block), PSt (1st block)-b-PAAc (2nd block), and a triblock copolymer film of PAAc (1st)-b-PSt (2nd)-b-PHPMA (3rd), were also fabricated, suggesting the "renewability" of the TEMPO-initiated polymerization in the SI-VDP scheme. It is also noticed that the SI-VDP is more efficient than the conventional solution phase polymerization in producing functional polymer brushes such as PNIPAAm, PAAc, or PAAc-b-PSt end-grafted films. In summary, our studies have shown clear advantages of the SI-VDP setup for the nitroxide-mediated polymerization scheme in controlling synthesis of end-grafted homo- and copolymer thin films.  相似文献   

10.
Interpenetrating polymer networks (IPNs) based on poly (N-isopropylacrylamide), (PNIPAAm) and poly (N-acryloxysuccinimide) (PNAS), grafted onto polypropylene (PP), were synthesized in three consecutive steps using ionizing radiation in the first and second steps and chemical reaction in third one. In the first step a thermosensitive graft copolymer of NIPAAm onto PP film was obtained by gamma radiation with a 60Co source. The grafted side chains of PNIPAAm were then crosslinked with gamma radiation to give net-[PP-g-NIPAAm]. The secondary network was obtained in situ by chemical crosslinking between PNAS and polylysine (pLys). The PP-g-IPNs exhibited the lower critical solution temperature (LCST) at around 32 °C. Based on its thermoreversible behavior, this system could be used for immobilization of biomolecules. The phase transition temperature (LCST) and network properties of the IPNs were measured by swelling behavior. Additional characterization by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and infrared (FTIR-ATR) determinations are reported.  相似文献   

11.
以壳聚糖(CS)为原料,在1-乙基-3-(3-二甲胺丙基)碳-二亚胺盐酸盐(EDC.HCL)和N-羟基琥珀酰亚胺(NHS)的活化作用下,合成了半乳糖基化壳聚糖(GC)单体,并与N-异丙基丙烯酰胺(NIPAAm)反应,制备了温敏性半乳糖基化壳聚糖N-异丙基丙烯酰胺共聚水凝胶(Gal-CS-g-PNIPAAm).通过红外光谱(FTIR)、光电子能谱(XPS)和扫描电子显微镜(SEM)等测试方法对其成分和结构进行了表征,并对其溶胀率和表面亲疏水性进行了研究.在Gal-CS-g-PNIPAAm凝胶表面培养人正常肝细胞系(HL-7702),研究其生长、脱附及转载(再增殖)行为.结果表明Gal-CS-g-PNIPAAm水凝胶具有良好的温度响应性和生物相容性,与PNIPAAm水凝胶相比,Gal-CS-g-PNIPAAm凝胶表面更有利于HL-7702细胞增殖.将温度降低至临界温度(LCST,32.5℃)以下,细胞可以从凝胶表面自发脱附,与酶消化脱附相比,细胞损伤更少.Gal-CS-g-PNIPAAm凝胶表面脱附的细胞比PNIPAAm凝胶表面脱附的细胞活性更高,表明PNIPAAm水凝胶引入GC单体后,凝胶的生物相容性得到改善,且脱附后细胞的增殖活力明显增加.  相似文献   

12.
Recently, there are significant interests in the development of biomaterials with nonlinear response to an external stimulus. Thermoresponsive polymers as a well-known class of stimuli-responsive materials represent reversible hydrophilicity/hydrophobicity characteristics around a critical temperature. This switchable behavior applies for nondestructive cellular detachment from cultivation substrates. In this study, poly (N-isopropylacrylamide) (PNIPAAm)-grafted dishes were made up to harvest retinal pigmented epithelial (RPE) and periodontal ligament cell (PDLC) sheets. Wettability assessments verified that all functionalized surfaces were inverted from hydrophilic to hydrophobic state when the temperature rises from lower critical solution temperature (LCST) at 37 °C. Other physicochemical characteristics such as chemical composition, grafting thickness, and surface topography were investigated through attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscopy (AFM). ATR-FTIR results showed typical peaks of amide group corresponding to successful PNIPAAm polymerization. AFM microscopy results also proved creating a rough PNIPAAm layer with thickness of 29.2 nm after grafting process in the mixture of methanol and water. Cell culture experiments showed an irreversible cellular attachment/detachment from modified surfaces upon temperature changes. These results introduced thermoresponsive TCPS to noninvasively harvest RPE and PDLCs sheets especially for application in scaffold-free tissue engineering decorations. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1567–1576  相似文献   

13.
A poly(N-isopropylacrylamide) (PNIPAAm) gradient covalently anchored on a silicon substrate with a linear variation of thickness was fabricated by continuous injection of the reaction mixture (NIPAAm, CuBr and its ligand, methanol, and water) into a glass chamber containing a silicon wafer, whose surface had been homogeneously immobilized with bromoisobutyryl bromide (BIBB). Because of the good control of the surface-initiated atom transfer radical polymerization (SI-ATRP) technique, the thickness of the PNIPAAm brushes was linearly proportional to the polymerization time. As a result, the gradient length and sharpness could be easily controlled by the experimental parameters such as the polymerization time and the injection rate. The as-prepared PNIPAAm gradients were characterized by ellipsometry, water contact angle, and atom force microscopy to detect their alteration of the thickness, surface wettability, and morphology, confirming the gradient structure. X-ray photoelectron spectroscopy confirmed the surface composition of the PNIPAAm. In vitro culture of HepG2 cells was implemented on the gradient surfaces, revealing that the cells could adhere at 37 degrees C and could be detached at 24 degrees C when the gradient thickness was in the range of 20-45 nm. The work thus develops a method to fabricate the stable gradient surface with better quality control, and clarifies in a facile manner the appropriate thickness of the PNIPAAm brushes in terms of cell adhesion and detachment.  相似文献   

14.
Superhydrophobic aluminum surfaces with excellent corrosion resistance were successfully prepared by electrospinning of a novel fluorinated diblock copolymer solution. Micro- and nanostructuration of the diblock copolymer coating was obtained by electrospinning which proved to be an easy and cheap electrospinning technology to fabricate superhydrophobic coating. The diblock copolymer is made of poly(heptadecafluorodecylacrylate-co-acrylic acid) (PFDA-co-AA) random copolymer as the first block and polyacrylonitrile (PAN) as the second one. The fluorinated block promotes hydrophobicity to the surface by reducing the surface tension, while its carboxylic acid functions anchor the polymer film onto the aluminum surface after annealing at 130 °C. The PAN block of this copolymer insures the stability of the structuration of the surface during annealing, thanks to the infusible character of PAN. It is also demonstrated that the so-formed superhydrophobic coating shows good adhesion to aluminum surfaces, resulting in excellent corrosion resistance.  相似文献   

15.
We report actively controlled transport that is thermally switchable and size-selective in a nanocapillary array membrane (NCAM) prepared by grafting poly(N-isopropylacrylamide) (PNIPAAm) brushes onto the exterior surface of a Au-coated polycarbonate track-etched membrane. A smooth Au layer on the membrane surface, which is key to obtaining a uniform polymer film, was prepared by thermal evaporation of approximately 50 nm Au on both exterior surfaces. After evaporation, the inner diameter of the pore is reduced slightly, but the NCAM retains a narrow pore size distribution. PNIPPAm brushes with 10-30 nm (dry film) thickness were grafted onto the Au surface through surface-initiated atom transfer radical polymerization (ATRP) using a disulfide initiator, (BrC(CH3)2COO(CH2)11S)2. Molecular transport through the PNIPAAm polymer brush-modified NCAMs was investigated by real-time fluorescence measurements using fluorescein isothiocyanate (FITC)-labeled dextrans ranging from 4.4 to 282 kDa in membranes with variable initial pore diameters (80, 100, and 200 nm) and different PNIPAAm thicknesses. Manipulating the temperature of the NCAM through the PNIPAAm lower critical solution temperature (LCST) causes large, size-dependent changes in the transport rates. Over specific ranges of probe size, transport is completely blocked below the LCST but strongly allowed above the LCST. The combination of the highly uniform PNIPAAm brush and the monodisperse pore size distribution is critical in producing highly reproducible switching behavior. Furthermore, the reversible nature of the switching raises the possibility of using them as actively controlled filtration devices.  相似文献   

16.
温敏性壳聚糖共聚膜的制备与细胞吸附/脱附行为   总被引:1,自引:0,他引:1  
将丙烯酸(AAc)与壳聚糖(CS)反应, 合成了壳聚糖大单体(CS-AAc), 再用CS-AAc与N-异丙基丙烯酰胺(NIPAAm)共聚, 制备P(CS-AAc-NIPAAm)共聚物. 通过红外光谱和X射线光电子能谱等分析证实了产物的结构和组成. 对P(CS-AAc-NIPAAm)共聚膜的动态接触角及对细胞的吸附与脱附行为研究发现, 共聚膜表现出良好的温度敏感性, 其表面成功地种植了成纤维细胞(L929). 当环境温度降低后, 共聚膜表面细胞自动脱附, 从而避免了使用酶解法脱附细胞造成的细胞功能损伤.  相似文献   

17.
Efficient local gene transfection on a tissue scaffold is dependent on good cell-adhesion characteristics. In this work, the thermo-responsive gelatin-functionalized polycaprolactone (PCL) films were proposed for improvement of cell adhesion and intelligent recovery of gene-transfected cells. Functional copolymer brushes (PCL-g-P(NIPAAm-co-MAAS)) were first prepared via surface-initiated ATRP of N-isopropylacrylamide (NIPAAm) and methacrylic acid sodium salt (MAAS) from the initiator-funcationalized PCL surfaces. The pendant carboxyl end-groups of the PCL-g-P(NIPAAm-co-MAAS) surface were subsequently coupled with gelatin via carbodiimide chemistry to produce the thermo-responsive gelatin-functionalized PCL surface. The thermo-responsive gelatin-functionalized PCL film surface can improve cell adhesion and proliferation above the LCST of P(NIPAAm) without destroying cell detachment properties at lower temperatures. The dense transfected cells can be recovered simply by lowering culture temperature. The thermo-responsive gelatin-functionalized PCL films are potentially useful as intelligent adhesion modifiers for directing cellular functions within tissue scaffolds.  相似文献   

18.
Novel thermo‐responsive poly(N‐isopropylacrylamide)‐block‐poly(l ‐lactide)‐block‐poly(N‐isopropylacylamide) (PNIPAAm‐b‐PLLA‐b‐PNIPAAm) triblock copolymers were successfully prepared by atom transfer radical polymerization of NIPAAm with Br‐PLLA‐Br macroinitiator, using a CuCl/tris(2‐dimethylaminoethyl) amine (Me6TREN) complex as catalyst at 25 °C in a N,N‐dimethylformamide/water mixture. The molecular weight of the copolymers ranges from 18,000 to 38,000 g mol?1, and the dispersity from 1.10 to 1.28. Micelles are formed by self‐assembly of copolymers in aqueous medium at room temperature, as evidenced by 1H NMR, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The critical micelle concentration determined by fluorescence spectroscopy ranges from 0.0077 to 0.016 mg mL?1. 1H NMR analysis in selective solvents confirmed the core‐shell structure of micelles. The copolymers exhibit a lower critical solution temperature (LCST) between 32.1 and 32.8 °C. The micelles are spherical in shape with a mean diameter between 31.4 and 83.3 nm, as determined by TEM and DLS. When the temperature is raised above the LCST, micelle size increases at high copolymer concentrations due to aggregation. In contrast, at low copolymer concentrations, decrease of micelle size is observed due to collapse of PNIPAAm chains. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3274–3283  相似文献   

19.
A new atom transfer radical polymerization (ATRP) initiator, namely, 2‐(1‐(2‐azidoethoxy)ethoxy)ethyl 2‐bromo‐2‐methylpropanoate containing both “cleavable” acetal linkage and “clickable” azido group was synthesized. Well‐defined azido‐terminated poly(N‐isopropylacrylamide)s (PNIPAAm‐N3)s with molecular weights and dispersity in the range 11,000–19,000 g mol?1 and 1.20–1.28, respectively, were synthesized employing the initiator by ATRP. Acetal containing PCL‐b‐PNIPAAm block copolymer was obtained by alkyne–azide click reaction of azido‐terminated PNIPAAm‐N3 with propargyl‐terminated PCL. Critical aggregation concentration (CAC) of PCL‐b‐PNIPAAm copolymer in aqueous solution was found to be 8.99 × 10?6 M. Lower critical solution temperature (LCST) of PCL‐b‐PNIPAAm copolymer was found to be 32 °C which was lower than that of the precursor PNIPAAm‐N3 (36.4 °C). The effect of dual stimuli viz . temperature and pH on size and morphology of the assemblies of PCL‐b‐PNIPAAm block copolymer revealed that the copolymer below LCST assembled in spherical micelles which subsequently transformed to unstable vesicles above the LCST. Heating these assemblies above 40 °C led to the precipitation of PCL‐b‐PNIPAAm block copolymer. Whereas, at decreased pH, micelles of PCL‐b‐PNIPAAm copolymer disintegrate due to the cleavage of acetal linkage and precipitation of hydrophobic hydroxyl‐terminated PCL. The encapsulated pyrene release kinetics from the micelles of synthesized PCL‐b‐PNIPAAm copolymer was found to be faster at higher temperature and at lower pH. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1383–1396  相似文献   

20.
贺晓凌  王金燕  肖飞  陈莉 《高分子学报》2009,(12):1274-1281
利用自由基聚合法合成了半乳糖糖化温敏凝胶(P(NIPAAm-co-GAC))和壳聚糖糖化温敏凝胶(P(NIPAAm-co-CSA)),对其温度响应性和溶胀性能进行了研究,结果表明,两种糖化温敏凝胶在水中和细胞培养基中均显示较好的温度响应性,以及比聚(N-异丙基丙烯酰胺)温敏凝胶(PNIPAAm)更好的溶胀性能.进一步研究人肝肿瘤细胞(HepG2)在凝胶表面的细胞行为发现,HepG2在P(NIPAAm-co-GAC)、PNIPAAm凝胶表面吸附量及活性较高,表现出良好的生长趋势,而在P(NIPAAm-co-CSA)凝胶表面吸附量和活性很低,其增殖受到抑制;通过降低环境温度,能使培养在P(NIPAAm-co-GAC)和PNIPAAm凝胶表面的HepG2细胞发生自动脱附,避免了酶解法对细胞功能造成的损伤,并且细胞片层比单个细胞表现出更快的脱附速率;研究细胞转载行为表明,通过温度诱导得到的细胞片层,其生物活性远远大于通过酶解法得到的细胞的生物活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号