首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
本文在银膜电极阴极溶出法测定水中硫化物的基础上研究了Cl~-的测定方法。以半径为1.2毫米的玻炭球银膜电极为工作电极的阴极溶出法可检出0.1微克/50毫升氯离子,在0.1—5.0微克/50毫升氯离子范围内波高与浓度成正比,回收率在95—110%之间。本法适用于环境降水及高纯水中氯根的测定。仪器装置与试剂玻炭球银膜电极、铂丝辅助电极、银-氯化银参比电极(外套0.1M硝酸钾盐桥);75-4B快速极谱仪,磁力搅拌器,秒表;氯化钠标准溶液:称取0.1648克600℃灼烧过的氯化钠溶解于水并定容至100毫升,此溶液1毫升含0.1毫克氯,用前再稀释成每毫升含1微克氯。分析步骤取50毫升试液于100毫升烧杯中,加入25毫升2M硝酸钾溶液,放入搅拌磁芯,开动搅拌器并插入“三电极”,在 0.4伏沉积1分钟,静止半  相似文献   

2.
在含有金的玫瑰红银试剂-盐酸体系中,玫瑰红银试剂被3价金所氧化,其氧化产物在-0.91伏出现一吸附波,利用此波间接测定微量金,具有较高的测定灵敏度(4×10~(-8)M),但在盐酸溶液中试验空白值不够稳定,影响测定下限。试验发现在1M高氯酸介质中含2.5×10~(-5)M玫瑰红银试剂-0.1%盐酸羟胺-0.05M柠檬酸的底液中,试验空白值趋近于零,可用于1微克以下金的测定。金量在0.1—15微克/10毫升范围内与峰高呈线性关系。矿样分解后通过泡沫塑料和巯基棉两次分离富集,可与共存元素分离,消除干扰。方法适于矿石中0.05克/吨以上金的测定。一、主要试剂及仪器金标准溶液取光谱纯金以王水溶解,配制成每毫升含10微克金的标准液。玫瑰红银试剂(0.0025M)取0.0065克试剂用10毫升盐酸溶解(用时配制)。泡沫塑料多孔聚醚型聚氯脂泡沫塑料,剪成  相似文献   

3.
用自制二溴苯基萤光酮(DBPF)对铜合金中锡的测定进行了试验。于pH2.2盐酸-氯化钾缓冲液的50毫升显色液中,存在10毫升乙醇、2毫升3×10~(-4)MDBPF溶液、1毫升0.1%CPB乙醇(2+3)溶液所形成的锡-DBPF-CPB三元络合物,15分钟后显色完全,并可稳定80分钟;0—25微克/50毫升锡范围符合比尔定律。对10微克锡,用1毫升混合掩蔽剂  相似文献   

4.
在苦杏仁酸-辛可宁-氯酸钾(钠)体系中,催化极谱测定钨,已被地质部推荐为化探扫面的分析方法。加入辛可宁虽然可大大提高钨催化波的灵敏度,但在上述底液中也产生波峰,而且与钨的峰电位仅相差-0.06V。所以当钨量很少时(0.1微克/25毫升以下)辛可宁波就显著地压抑痕量钨的催化波,甚至不出现波峰,因而影响到钨的检测下限。我们采取加入一定量钨标准液的办法,即在标准和矿样中都同时加入0.1微克钨,然后在测得的波高中分别扣去0.1微克钨的波高,从而克服辛可宁波的影响,可准确检测0.05微克钨,检测限为0.1ppm。在0~2微克/25毫升范围,钨浓度与波高呈线性关系。本法适用于化探扫面样品中0.1ppm以上钨的测定。  相似文献   

5.
本文就硫氰酸盐光度法测定钼时还原剂的还原作用,铁盐、铜盐的作用机理以及Cu~ 是否参与Mo-CNS~-络合物的组成作了某些探讨,并在此基础上提出了本文所述方法。试验表明,不另外加还原剂,在1.2N盐酸介质中,仅显色剂本身就能使钼(Ⅵ)还原为钼(Ⅴ),且在Cu~ 诱导体存在下显色立即完成。一、试剂与仪器氯化亚铜溶液称取0.080克氯化亚铜,加入少量盐酸和100毫升水溶解。此溶液1毫升含500微克铜。硫氰酸铵溶液(30%)。钼标准液配成50微克/毫升溶液。72型分光光度计。二、实验方法取一定量钼标准溶液(含钼5—300微克)置于50毫升容量瓶中,加水稀释至约20毫升,以1%酚酞为指示剂,用氨水(1 1)调至溶液微红(或用盐酸  相似文献   

6.
本法基于钯在碱性溶液中与1,2-环已烷二酮二肟形成黄色络合物,在滴汞电极上产生吸附催化波。催化体系为0.28M氢氧化钠-0.4%抗坏血酸-0.004M1,2-环已烷二酮二肟-0.5%吡啶溶液。峰电位在-1.12伏左右(对饱和甘汞电极)。可检出0.005微克/毫升的钯。在10毫升溶液中钯的波高与其量之间,于0.05~100微克范围内呈线性关系。本法比文献报导的方法,分析流程短,灵敏度更高,而且共存元素镍的允许量显著增大。可以检测出一般矿样中0.005克/吨以上的钯。  相似文献   

7.
痕量钨的催化极谱测定   总被引:2,自引:1,他引:1  
本文提出产生高灵敏度的钨催化氢波的新体系。以0.1NH_2SO_4—0.2NNa_2SO_4—7×10~(-5)M二苯羟乙酸作测定底液可检出低达1×10~(-4)微克/毫升的三氧化钨(或8×10~(-5)微克/毫升的钨)。在0.001~0.025微克/10毫升三氧化钨范围内,催化电流与三氧化钨浓度有良好线性关系。试验了30多种共存离子对钨催化电流的影响,表明方法有较好选择性。拟定了岩石土壤中痕量钨的测定流程,初步应用效果良好。  相似文献   

8.
本文采用铍试剂Ⅱ目视比色测定矿石中低品位铍,共存干扰元素可以用氨羧络合剂Ⅲ-甘油掩蔽,此法经多年实践,证明准确、快速。每100毫升溶液中含被0-55微克,能清晰地分辨出5微克铍的级差,测定矿石中0.04-4%氧化铍相对误差不超过10%,与其它方法比较,结果一致。分析步骤:称取0.1-0.5克试样于30毫升银柑埚中,加入5-10毫升40%氢氟酸,低温加热至氢氟酸蒸干,加入3克氟氢化钾(如氢氟酸完全分解矿样时,此步可略去)。先在电炉上低温烘烤,待熔化时与试样残渣混匀,直至固体物不再膨胀为止,在约700℃马弗炉中烧结10分钟,取出稍冷后用100毫升热的硫酸-硼酸溶液(2克硼酸溶解在100毫升5%硫酸中),浸取(简单的矿  相似文献   

9.
原子吸收法测定镍、钴时,5%盐酸的试样溶液,镍、钴的消光值长时期稳定;而5%盐酸的标准序列溶液,镍钴的消光值随放置时间逐渐下降,如在该溶液中加入少量三氯化铁,镍、钴的消光值就能长期保持不变。一、试剂与仪器镍钴储备液:1毫克/毫升,工作液:10微克/毫升。  相似文献   

10.
钯的催化分光光度测定   总被引:1,自引:0,他引:1  
我们研究了用钯离子对次磷酸二氢钠与钼酸铵反应生成钼蓝的催化诱导作用。得出测定的适宜条件为:体系酸度为0.02N;按先加入Pd~(2+)、盐酸、次磷酸二氢钠,最后加入钼酸铵的顺序;实验温度保持在24°±1.5℃。灵敏度为0.05微克/毫升。分析方法在24℃的恒温下,于25毫升容量瓶中,按顺序加入0.1N盐酸溶液和0.1N盐酸的PdCl_2溶液(每毫升含0.554微克/毫升),合计为5毫升;然后加入20%的次磷酸二氢钠溶液10毫升,摇匀;最后迅速加入4%钼酸铵10毫升,摇匀(在加入钼酸铵后用停表记  相似文献   

11.
华惠珍等曾研究过锑的氢催化波,发现在含0.4M氯化钠,0.2M盐酸或3.6V磷酸的钴盐溶液中均有锑的氢催化波。其主要研究的体系是在pH 2时的0.4M硫酸钠,10~(-4)M硫酸钴溶液。作者研究了盐酸、钴盐体系中的氢催化波,发现盐酸浓度在0.5—10M之间,在一定的锑量和钴盐浓度时均能产生氢催化波。由于盐酸对某些物质的可溶性和省却调节pH值等优点,在该一底液中的锑的氢催化波是有利于分析上应用的。在测定0.05—1微克锑/毫升时,最宜的测定条件是2M盐酸,10~(-3)M氯化钴、10~(-4)M溴化四丁基铵。当把盐酸浓度改为1M时,可测0.015微克锑/毫升。  相似文献   

12.
氢化物分离-邻菲罗啉铁分光光度法测定微量硒   总被引:2,自引:1,他引:2  
本文研究用硼氢化钾溶液使硒(Ⅳ)还原成H_2Se挥发分离出来,用邻菲罗啉铁(Ⅲ)溶液吸收,以分光光度法测定被H_2Se还原生成的橙红色邻菲罗啉亚铁来测定硒的方法。 1.试剂和仪器: 硒标准溶液:将光谱纯硒溶于硝酸,加水配成1.00毫克/毫升硒的贮备液,使用时用0.1NH_2SO_4稀释成1.00微克/毫升硒的标准溶液。硼氢化钾溶液(3%):将硼氢化钾溶于0.5%KOH的水溶液中,滤去不溶物,贮于聚乙烯瓶中。硒化氢吸收液:在50毫升的醋酸-醋酸钠缓冲液(pH=4)中,加入75毫升0.2%邻非罗啉  相似文献   

13.
磷的测定方法报道较多,但具备显色速度快、显色液稳定,并适用于含中、高量铬、锰的合金钢分析方法,则为少见。本文以高氯酸为氧化剂加热冒烟至干使磷完全氧化成正磷酸盐,在0.37—1.10mol/L硫酸介质中使之形成磷钼杂多酸,再以氟化钠-氯化亚锡还原成钼蓝。显色液至少可稳定6小时,磷量在0—100微克/100毫升范围符合比尔定律。为消除摹体及带色离子的影响,采用与试液等量的含低量磷的铁溶液为底绘制工作曲线;并以酒石酸钾钠为掩蔽剂,高达6%硅、18%锰、0.1%砷均无干扰,但酒石酸钾钠用量对显色稍有影响,因此在操作中应控制一致。方法用于标准钢样中磷量测定,其分析结果与萃取法、重量法一致。试剂与仪器混合酸:将硝酸、高氯酸和水按按5∶4∶3混合;硫酸-酒石酸钾钠溶液:在100毫升硫酸  相似文献   

14.
本文应用碘绿作显色剂,萃取分光光度法测定微量钽。用苯萃取氟钽酸-碘绿缔合物。其最大吸收波长为632毫微米。水溶液中钽含量在0~30微克Ta_2O_5/10毫升范围内,符合比尔定律。选择性和重现性良好。苯层中氟钽酸-碘绿缔合物的表观克分子吸收系数ε632毫微米为9.8×10~4。本法灵敏度:水相中0.02微克Ta_2O_5/毫升。就可得0.01吸光度读数。应用本法分析了纯二氧化钛和标准钢样,标准回收实验表明,误差一般不超过±5%。  相似文献   

15.
在一定的底液中,铅和镉都能与碘离子形成[PbI_4]~2、[CdI_4]~(2-)络离子,吸附在滴汞电极上并产生一个高灵敏的极谱催化波,已有报导。本文在此基础上,对铅和镉的吸附催化波作了进一步研究。经试验确定,以0.1N盐酸-0.4%抗坏血酸-0.04%硫氰酸钾-0.8%碘化钾为底液,连续测定矿石中微量铅和镉。铅峰电位为-0.58伏(对饱和甘汞电极),镉峰电位-0.72伏(对饱和甘汞电极)。在25毫升体积中,铅和镉在0.5~20微克范围内呈线性关系,测定下限均达0.02微克/毫升。试验表明:在此底液中,5毫克锌、锰,2毫克钙,500微克铜、铝、铋,400微克镍,200微克钨、钛,150微克锡,100微克钼、磷、镓、钴、锑、  相似文献   

16.
迄今为止,纯钙中微量杂质元素的分析国外少见报导。国内已有的资料是用电感耦合高频等离子炬光谱测定金属钙中的7个杂质元素;用原子吸收光度法测定锂、钠、钾、镁、铁、锰、铜等10个杂质元素。前者可测定10毫克/毫升钙试液中的0.1—10微克/毫升的杂质元素,但仪器昂贵、成本高、不易推广。后者虽不经分离,手续简便,但只能用于纯度不太高的金属钙的分析。其灵敏度不高的原因,主要来自大量基体钙所造成的光散射的干扰。因此,分离基体是消除干扰、改善测定下限的主要途径。本文选择在弱酸性介质中,用草酸沉淀基体钙的简便分离方法,以空气/乙炔火焰同时测定微量锰、铜、铁、镍,其灵敏度(1%吸收)分别为0.05微克/毫升、0.1微克/毫升、0.1微克/毫升、0.1微克/毫升。回收率在93—102%之间。可满足99.99%以下金属钙的分析。一、仪器与试剂WFD-Y2原子吸收分光光度计。锰、铜、铁、镍空心阴极灯。  相似文献   

17.
本文试验了三辛基氧化膦(TOPO)与氰酸盐和钛形成稳定的三元络合物光度测定钛的条件,并制订了纯铝、高纯铝中微量钛的测定方法。试验确立:1.三元络合物的最大吸收波长为429毫微米;2.最佳萃取酸度为5—11N硫酸;3.TOPO环已烷溶液浓度在0.015M以上可得到最大萃取率;4.在试验条件下,硫氰酸铵的加入量为2—5克,可得到最大萃取率;5.萃取适宜温度为20—55℃;6.萃取时间需要在4分钟以上方可完全;7.有机相/水相的体积为1∶2至1∶6范围内对测定结果影响不大;8.络合物显色稳定时间可达4个半小时;9.加入铜、锌、铅、镉各100微克不干扰测定。在加入硫代甘醇酸1毫升条件下,铬1000微克、钒500微克、钼10微克;加入硫代甘醇2毫升放置5分钟后,铁5000微克、钼20微克;加入饱和硼酸5毫升时0.2克氟均不干  相似文献   

18.
氢化物-原子吸收法测定环境标准参考物中痕量砷和硒   总被引:4,自引:0,他引:4  
氢化物-原子吸收法,由于具有操作简单,快速,灵敏和干扰少的优点,得到较广泛的应用。然而文献报导中大都使用商品型氢化物装置,价格昂贵,操作不便。我们自行设计和制做了一套带有预原子化的电加热石英原子化器和自动进液、进气的氢化物装置。用于各种标准参考物中砷和硒的测定,均得到与标准值一致的结果。实验部分 1.主要仪器与试剂:WFX-1B型原子吸收仪(北京第二光学仪器厂)。砷标准储备液(1000μg/ml):称0.1320克分析纯的As_2O_3溶于2毫升氢氧化钠溶液中,加5毫升1M盐酸,用水稀释至100毫升;硒标准储备液(1000μg/ml):称取0.1406克分析  相似文献   

19.
极谱吸附催化波测定尿铅   总被引:3,自引:0,他引:3  
目前国内对铅测定大多沿用双硫腙比色法,操作中要使用氰化钾毒品和有机溶剂氯仿等。火焰原子吸收法对于铅的测定不够灵敏,且其设备昂贵,不易推广。阳极溶出分析又较费时,不适于作为常规分析方法。我们在文献的基础上试验了极谱催化波方法,将催化底液作适当变动,以0.07M抗坏血酸-0.7M酒石酸-0.6M碘化钾-0.001%聚乙烯醇为底液,将起始电位置于-0.45伏(对S.C.E),显著改善了波形的稳定性,检出下限由原来的0.05微克/毫升变为0.005微克/毫升。含铅  相似文献   

20.
对溴偶氮胂是一种高灵敏度稀土显色剂(εL(?)~(713)=3.3×10~5,εCe~(716)=3.5×10~5),但其中的碱土元素会严重干扰测定,对于2.5微克/25毫升的La_2O_3在测定误差小于10%时,钙、钡的允许量为3微克/25毫升,而种子、植株中的钙等干扰元素的含量一般为0.1—5毫克/克。利用PMBP萃淋树脂可以简便地将样品溶液中的微克量稀土元素与毫克量的碱土等干扰元素分离,从而可不经萃取直接测定粮食中的微量轻稀土元素。本法检测下限为0.1ppm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号