首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the contribution of local pulsed heating of light-absorbing microregions to biochemical activity, irradiation of Escherichia coli was carried out using femtosecond laser pulses (λ = 620 nm, τp=3 × 10−13 s, fp = 0.5 Hz, Ep = 1.1 × 10−3J cm−2, Iav = 5.5 × 10−4 W cm−2, Ip = 109 W cm−2) and continuous wave (CW) laser radiation (λ = 632.8 nm, I = 1.3 W cm−2). The irradiation dose required to produce a similar biological effect (a 160%–190% increase in the clonogenic activity of the irradiated cells compared with the non-irradiated controls) is a factor of about 103 lower for pulsed radiation than for CW radiation (3.3 × 10−1 and 7.8 × 102 J cm−2 respectively). The minimum size of the microregions transiently heated on irradiation with femtosecond laser pulses is estimated to be about 10 Å, which corresponds to the size of the chromophores of hypothetical primary photoacceptors—respiratory chain components.  相似文献   

2.
An intramolecular charge transfer fluorescence probe of 4′-N,N-dimethylamino-4-amino-chalcone(DMAC) exhibits characteristics clearly correlated with the polarity of solvents. The interaction of this fluorescence probe with calf thymus DNA has been investigated. Generally, DMAC bound to DNA shows marked changes in fluorescence and absorbance properties compared to the spectral characteristics of the free form in solution phase. In the presence of DNA the fluorescence intensity of DMAC is greatly increased with a large bathochromic shift of excitation and emission wavelengths. A hypochromism in absorption spectrum was also observed. The absorption and fluorescence spectra, salt concentration effect, and KI quenching experiments demonstrate that DMAC molecule as an intercalator is inserted into the base-stacking domain of DNA double helix, and the interaction of the nucleobases with DMAC molecule causes the increase of fluorescence intensity and hypochromism in absorption spectrum. The intrinsic binding constant and the binding site number were estimated to be 7.04 × 106 mol L−1 in base pairs and 0.065, respectively. The I/I0 vs DNA concentration plot shows a linear range covering 1.98 × 10−6 to 2.08 × 10−4 mol L−1 in base pairs which can be used for determining DNA with a detection limit of 6.0 × 10−7 mol L−1 in base pairs (0.6 μg ml−1).  相似文献   

3.
The voltammetric behavior of the LMF-Mg(II) complex with DNA at a mercury electrode is reported for the first time. In NH3–NH4Cl buffer (pH=9.10), the adsorption phenomena of the LMF–Mg(II) complex were observed by linear sweep voltammetry. The mechanism of the electrode reaction was found to be a reduction of LMF in the complex, and the composition of the LMF–Mg(II) complex is 2:1. In the presence of calf thymus DNA (ctDNA), the peak current of LMF–Mg(II) complex decreased considerably, and a new well-defined adsorptive reduction peak appeared at −1.63 V (vs. SCE). The electrochemical kinetic parameters and the binding number of LMF–Mg(II) with ctDNA were also obtained. Moreover, the new peak currents of LMF–Mg(II)–DNA system increased linearly correlated to the concentration of DNA in the 4.00×10−7–2.60×10−6 g ml−1 range when the concentrations of LMF–Mg(II) complex was fixed at 5.00×10−6 mol l−1, with the detection limits of 2.33×10−7 g ml−1. An electrostatic interaction was suggested by electrochemical method.  相似文献   

4.
Four short- and long-alkyl-multiamine ligands L1–L4 have been synthesized and characterized. The catalytic efficiency of complex CuL1 and functional metallomicelles CuL2–CuL4 were comparatively investigated for the hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) in buffered solution at 30 °C. The ternary kinetic model for metallomicellar catalysis was suggested to analyze the experimental data. The kinetic and thermodynamic parameters kN, KT and pKa were obtained. The results indicated that the complexes with 1:1 ratio of ligands L2–L4 to copper(II) ion were the kinetic active catalysts, and the deprotonized Cu(II) complex formed by activated water molecule was the real active species for BNPP catalytic hydrolysis. The real rate constant of the reaction catalyzed by CuL1–CuL4 was 4.00 × 10−6, 7.44 × 10−5, 1.42 × 10−4 and 4.10 × 10−4 s−1, respectively. The effects of ligand and microenvironment on the hydrolytic reaction of BNPP have been discussed in detail.  相似文献   

5.
The electrical conductivity of the crystallized polyphosphates Li3Ba2(PO3)7, LiPb2(PO3)5, LiCs(PO3)2, and αLiK(PO3)2 has been determined at different temperatures by impedance spectroscopy. The conductivity, σ, spreads within a range of 1.59 × 10−8 to 1.79 × 10−7 S cm−1 at 573 K, and from 1.71 × 10−5 to 9.86 × 10−4 S cm−1 at 773 K. The transport should be assumed in the majority by the lithium ions with regard to the structural characteristics of these polyphosphates. The results are discussed and compared to the conductivity properties of other lithium ion conductors.  相似文献   

6.
A sensitive spectrophotometric method for the determination of copper(II) based on a ternary complex with chromal blue G, a triphenylmethane reagent in the presence of cetyltrimethylammonium chloride, is described. The sensitivity of color reaction between copper and chromal blue G has been greatly increased by the sensitizing action of cetyltrimethylammonium chloride, a cationic surfactant. The color development of the ternary complex can be utilized in the highly sensitive spectrophotometric determination of copper. The molar absorptivity of the binary complex between copper and chromal blue G ε630nm = 9.56 × 103liters · mol−1 · cm−1 is enchanced on ternary complex formation to ε542 nm = 4.78 × 104liters · mol−1 · cm−1. The ternary complex gave a maximal absorbance at 542 nm in the pH range 9.8–11. Beer's law is obeyed up to at least 1.2 ppm of copper. The maximal absorbance of the ternary complex was found to develop within 5 min and then it remains constant for several hours. The formation constant of the ternary complex is calculated to be 8.6 × 1010 under these conditions.  相似文献   

7.
毛细管电泳-安培法测定复方磺胺甲噁唑片中的有效成分   总被引:1,自引:0,他引:1  
采用毛细管电泳-安培法(CE-AD)同时分离测定了磺胺甲噁唑(sulfamethoxazole,SMZ)、磺胺嘧啶(sulfadiazine,SD)和抗菌增效剂甲氧苄胺嘧啶(trimethoprim,TMP)3种常用磺胺类抗菌药物成分,考察了实验参数对分离、检测体系的影响。在优化实验条件下,以300μm碳圆盘电极作为工作电极,检测电位为1050mV(vs.SCE),在Na2B4O7(13mmol/L)-KH2PO4(18mmol/L)(pH5.8)的缓冲溶液中,分离电压18kV,进样6s,3组分在14min内可实现基线分离。上述3组分浓度分别在5×10-4~5×10-2、5×10-4~0.1和5×10-4~5×10-2g/L范围内与其峰电流强度呈线性关系,检出限达5.1×10-5~8.0×10-5g/L(S/N=3)。该方法已成功应用于复方磺胺甲噁唑片中抗菌活性成分的含量测定,结果令人满意。  相似文献   

8.
In the present work, blends of poly(ethylene oxide) (PEO), poly(acrylonitrile-co-methyl acrylate) (PANMA) and poly(4-vinylphenol-co-2-hydroxyethyl methacrylate) (PVPh-HEM) were studied by DSC, FTIR and electrochemical impedance spectroscopy (EIS). PEO/PANMA blends were found to be immiscible, while PEO/PVPh-HEM blends are miscible and PVPh-HEM/PANMA exhibits partial miscibility behaviour. The ternary PEO/PANMA/PVPh-HEM blends exhibited miscible compositions for PVPh-HEM and PEO-rich systems. The miscibility observed is a direct consequence of the hydrogen bond interactions among the polymer chains, in which the phenol groups in PVPh-HEM interact with both PEO and PANMA chains. The proton conductivity of a selected membrane based on the ternary blend containing 60% PEO and doped with H3PO4 aqueous solution reached 8 × 10−3 Ω−1 cm−1 at room temperature and 3 × 10−2 Ω−1 cm−1 at 80 °C.  相似文献   

9.
A transition metal complex as an electrochemical probe of a DNA sensor must have an applicable redox potential, high binding affinity and chemical stability. Some complexes with the dipyrido[3,2-a:2′,3′-c]phenazine (DPPZ) ligand have been reported to have high binding affinity for DNA. However, it was difficult to detect the targeted DNA electrochemically using these complexes because of the relatively high redox potential. In this work, a combination of bipyridine ligands with functional groups (---NH2, ---CH3 and ---COOH) and the DPPZ ligand were studied. The introduction of electron-donating groups was effective for controlling the redox potential of the DPPZ-type osmium complex. The [Os(DA-bpy)2DPPZ]2+ complex (DA-bpy; 4,4′-diamino-2,2′-bipyridine) had a lower half-wave potential (E1/2) of 147 mV (vs. Ag AgCl) and higher binding affinity with DNA {binding constant, K=3.1×107 M−1 in 10 mmol dm−3 Tris–HCl buffer with 50 mmol dm−3 NaCl (pH 7.76)} than those of other complexes. With the single stranded DNA (ssDNA) modified gold electrode, the hybridization signal (ΔI) of the [Os(DA-bpy)2DPPZ]2+ complex was linear in the concentration range of 1.0 pg ml−1–0.12 μg ml−1 for the targeted DNA with a regression coefficient of 0.999. The detection limit was 0.1 pg ml−1.  相似文献   

10.
Semiautomatic methods are described for the catalytic titrimetric determination of microamounts of silver and mercury(II) using a chloramine-T-selective electrode as monitor. The methods are based on the inhibitory effect of Ag(I) and Hg(II) on the iodide-catalyzed chloramine-T-arsenite and chloramine-T-H2O2 reactions. Microamounts of silver in the range 0.2–200 μg (1 × 10−7−1 × 10−4 M) and of mercury(II) in the range 0.1–200 μg (2.5 × 10−8−5 × 10−5 M) were determined using the chloramine-T-As(III) indicator reaction. Mercury(II) in the range 4–2000 μg (1 × 10−6−5 × 10−4 M) was also determined using the chloramine-T-H2O2 indicator reaction. The accuracy and precision were in the range 0.1–1%.  相似文献   

11.
New 3,4:9,10-dibenzo-2,11-dihydroxy-1,12-bispiperazine-5,8-dioxododecane complexes [C24H36N4O6Cu] (1), [C24H32N4O4Zn] (2) have been synthesized and characterized by elemental analysis, IR, NMR, Mass, EPR, UV–vis spectroscopy and molar conductance measurements. The complexes are non-ionic in nature and possess octahedral geometry around Cu2+, Zn2+ central metal ions. The binding studies of 1 and 2 with calf thymus DNA (CT-DNA) were investigated by UV–vis, fluorescence, cyclic voltammetery and viscosity measurements. The calculated binding constant Kb for 1 and 2 obtained from UV–vis absorption studies was 7.6 × 103 M−1, 80.8 × 104 M−1, respectively. The intrinsic binding constants were also estimated to be 7.0 × 104 M−1 and 7.53 × 105 M−1 for 1 and 2, respectively by using emission titrations. These experimental results suggest that complexes are groove binders and interact to CT-DNA with different affinities. Both the complexes in presence and absence of CT-DNA show quasireversible wave corresponding to CuII/CuI and ZnII/ZnI redox couple. The changes in E1/2, ΔE, Ipa/Ipc ascertain the interaction of 1 and 2 with CT-DNA. Further, decrease in viscosity of CT-DNA with increasing concentration of complexes was observed. In vitro, antimicrobial activity against fungi A. brassicicola, A. niger and bacteria E. coli, P. aeruginosa of complexes were carried out, which indicate that complex 2 is more active against both fungal and bacterial strains as shown by % inhibition data.  相似文献   

12.
Degradation of polyoxyethylene chain of non-ionic surfactant (TritonX-100) by chromium(VI) has been studied spectrophotometrically under different experimental conditions. The reaction rate bears a first-order dependence on the [Cr(VI)] under pseudo-first-order conditions, [TritonX-100]  [Cr(VI)] in presence of 1.16 mol dm−3 perchloric acid. The observed rate constant (kobs) was 3.3 × 10−4 to 3.5 × 10−4 s−1 and the half-life (t1/2) was 33–35 min for chromium(VI). The effects of total [TritonX-100] and [H+] on the reaction rate were determined. Reducing nature of non-ionic TritonX-100 surfactant is found to be due to the presence of –OH group in the polyoxyethylene chain. It was observed that monomeric and non-ionic micelles of TritonX-100 were oxidized by chromium(VI). When [TritonX-100] was less than its critical micelle concentration (cmc) the kobs values increased from 0.76 × 10−4 to 1.5 × 10−4 s−1. As the [TritonX-100] was greater than the cmc, the kobs values increases from 2.1 × 10−4 to 8.2 × 10−4 s−1 in presence of constant [HClO4] (1.16 mol dm−3) at 40 °C. A comparison was made of the oxidative degradation rates of TritonX-100 with different metal ion oxidants. The order of the effectiveness of different oxidants was as follows: permanganate > diperiodatoargentate(III) > chromium(VI) > cerium(IV).  相似文献   

13.
The spectra and kinetic behavior of solvated electrons (esol) in alkyl ammonium ionic liquids (ILs), i.e. N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEMMA-TFSI), N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEMMA-BF4), N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide (TMPA-TFSI), N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI), N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13-TFSI), and N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P14-TFSI) were investigated by the pulse radiolysis method. The esol in each of the ammonium ILs has an absorption peak at 1100 nm, with molar absorption coefficients of 1.5–2.3×104 dm3 mol−1 cm−1. The esol decayed by first order with a rate constant of 1.4–6.4×106 s−1. The reaction rate constant of the solvated electron with pyrene (Py) was 1.5–3.5×108 dm3 mol−1 s−1 in the various ILs. These values were about one order of magnitude higher than the diffusion-controlled limits calculated from measured viscosities. The radiolytic yields (G-value) of the esol were 0.8–1.7×10−7 mol J−1. The formation rate constant of esol in DEMMA-TFSI was 3.9×1010 s−1. The dry electron (edry) in DEMMA-TFSI reacts with Py with a rate constant of 7.9×1011 dm3 mol−1 s−1, three orders of magnitude higher than that of the esol reactions. The G-value of the esol in the picosecond time region is 1.2×10−7 mol J−1. The capture of edry by scavengers was found to be very fast in ILs.  相似文献   

14.
A new, rapid, sensitive, non-extraction batch, and flow injection spectrophotometric method for the determination of cationic surfactants (CSs) such as cetyltrimethyl ammonium bromide (CTAB), tetra-n-butyl ammonium chloride (TBAC) and cetylpyridinium chloride (CPC) is proposed. The method is based on the interaction of cationic surfactants with eriochrome black-T to form an ion-association complex. This complex has strong absorbance at 708 nm. The effects of chemical parameters and FIA variables on the determination of cationic surfactants were studied in detail, especially for CTAB. Under optimum conditions, the two linear calibration ranges of the method are 3.0 × 10−6 to 5.0 × 10−3 mol L−1 CTAB, CPB and DTAB for the batch spectrophotometric method and 2.0 × 10−6 to 2.0 × 10−4 mol L−1 CTAB, CPB and TBC for the flow injection spectrophotometric method. The sample throughput was 35 ± 5 samples h−1 at room temperature. The relative standard deviations for 10 replicates of analysis of (2.0, 0.6 and 0.2) × 10−4 mol L−1 CTAB were 1.2, 1.3, and 0.8%, respectively. In addition, the influence of potential interfering substances on the determination of cationic surfactants was studied. The proposed method is simple and rapid, using no toxic organic solvents. It was applied to the determination of trace CS in industrial wastewater with satisfactory results.  相似文献   

15.
A novel hybrid bifunctional sensing platform for simultaneous determination of NO and O2 has been developed, whereby hematite nanotubes are immobilized into the chitosan matrix onto a gold electrode (labeled as HeNTs-Chi/Au). The HeNTs distributed in porous-structured chitosan matrix not only offer abundant active sites for bifunctional sensing of NO and O2, but also facilitate oxidation of NO and reduction of O2 dramatically. Straight calibration curves are achieved in analyte concentration ranges of 5.0 × 10−8 to 1.25 × 10−6 mol L−1 for NO and 2.5 × 10−7 to 6.0 × 10−6 mol L−1 for O2. Also, the detection limits are low of 8.0 × 10−9 mol L−1 for NO and 5.0 × 10−8 mol L−1 for O2. Such an efficient bifunctional sensor for NO and O2 offers great potential in quantitation of NO levels in biological and medical systems, since NO level is highly regulated by various reactive oxygen species.  相似文献   

16.
We compared the binding affinity of 6-propyl-2-thiouracil (PTU) with native and destabilized human serum albumin (HSA) as a model to assess the binding ability of albumin in patients suffering from chronic liver or renal diseases. Urea (U) and guanidine hydrochloride (Gu·HCl) at a concentration of 3.0 M were used as denaturation agents.Increasing the concentration of PTU from 0.8 × 10−5 to 1.20 × 10−4 M in the systems with HSA causes a decrease in fluorescence intensity of the protein excited with both 280 and 295 nm wavelengths. The results indicate that urea and Gu·HCl bind to the carbonyl group and then to the NH-group. To determine binding constants we used the Scatchard plots. The presence of two classes of HSA–PTU binding sites was observed. The binding constants (Kb) are equal to 1.99 × 104 M−1 and 1.50 × 104 M−1 at λex = 280 nm, 5.20 × 104 M−1 and 1.65 × 104 M−1 at λex = 295 nm. At λex = 280 nm the number of drug molecules per protein molecule is aI = 1.45 and aII = 1.32 for I and II binding sites, respectively. At λex = 295 nm they are aI = 0.63 and aII = 1.54 for the I and II binding sites.The estimation of the binding ability of changed albumin in the uremic and diabetic patients suffering from chronic liver or renal diseases is very important for safety and effective therapy.  相似文献   

17.
EPR studies are carried out on Cr3+ ions doped in d-gluconic acid monohydrate (C6H12O7·H2O) single crystals at 77 K. From the observed EPR spectra, the spin Hamiltonian parameters g, |D| and |E| are measured to be 1.9919, 349 (×10−4) cm−1 and 113 (×10−4) cm−1, respectively. The optical absorption of the crystal is also studied at room temperature. From the observed band positions, the cubic crystal field splitting parameter Dq (2052 cm−1) and the Racah interelectronic repulsion parameter B (653 cm−1) are evaluated. From the correlation of EPR and optical data the nature of bonding of Cr3+ ion with its ligands is discussed.  相似文献   

18.
The mediated oxidation of N-acetyl cysteine (NAC) and glutathione (GL) at the palladized aluminum electrode modified by Prussian blue film (PB/Pd–Al) is described. The catalytic activity of PB/Pd–Al was explored in terms of FeIII[FeIII(CN)6]/FeIII[FeII(CN)6]1− system by taking advantage of the metallic palladium layer inserted between PB film and Al, as an electron-transfer bridge. The best mediated oxidation of NAC and GL on the PB/Pd–Al electrode was achieved in 0.5 M KNO3 + 0.2 M potassium acetate of pH 2. The mechanism and kinetics of the catalytic oxidation reactions of the both compounds were monitored by cyclic voltammetry and chronoamperometry. The charge transfer-rate limiting step as well as overall oxidation reaction of NAC or GL is found to be a one-electron abstraction. The values of transfer coefficients α, catalytic rate constant k and diffusion coefficient D are 0.5, 3.2 × 102 M−1 s−1 and 2.45 × 10−5 cm2 s−1 for NAC and 0.5, 2.1 × 102 M−1 s−1 and 3.7 × 10−5 cm2 s−1 for GL, respectively. The modifying layers on the Pd–Al substrate have reproducible behavior and a high level of stability in the electrolyte solutions. The modified electrode is exploited for hydrodynamic amperometry of NAC and GL. The amperometric calibration graph is linear in concentration ranges 2 × 10−6–40 × 10−6 for NAC and 5 × 10−7–18 × 10−6 M for GL and the detection limits are 5.4 × 10−7 and 4.6 × 10−7 M, respectively.  相似文献   

19.
Cyclic voltammetry has been employed to examine the electrochemistry of nickel(II) salen at a glassy carbon electrode in an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, BMIM+BF4). Residual water in the ionic liquid can be eliminated by introduction of activated molecular sieves into the electrochemical cell. Nickel(II) salen exhibits a one-electron, quasi-reversible reduction to nickel(I) salen, and the latter species serves as a catalyst for the cleavage of carbon–halogen bonds in iodoethane and 1,1,2-trichlorotrifluoroethane (Freon® 113). In BMIM+BF4 the diffusion coefficient for nickel(II) salen at room temperature has been determined to be 1.8×10−8 cm2 s−1, which is more than 500 times smaller than that (1.0×10−5 cm2 s−1) in a typical organic solvent–electrolyte system such as dimethylformamide (DMF) containing 0.10 M tetramethylammonium tetrafluoroborate.  相似文献   

20.
The radical pair dynamics in a photochemical hydrogen abstraction reaction of 2-methyl-1,4-naphthoquinone in a sodium dodecylsulfate micelle was modulated by a microwave pulse. After a short resonant 180° microwave pulse, the recombination of the radical pair was enhanced, its rate constant being determined to be (8.3±0.8)×106 s−1. Other kinetic parameters were determined by the scanning of the microwave pulse position as follows: the formation of the radical pair (3.3±0.3)×107 s−1, the relaxation rate from the triplet (T±1) levels to the singlet–triplet (T0) mixed one (3.3±0.3)×105 s−1 at 331 mT, and the radical escape rate (5.8±0.6)×105 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号