首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We demonstrate the generation of femtosecond mid-infrared pulses by direct difference-frequency mixing in a AgGaS(2) crystal of two intense pulses from a dual-wavelength oscillator that have been simultaneously amplified in a single regenerative amplifier. A pulse energy of as much as 1.6 muJ was achieved at wavelengths of 9-11 mum.  相似文献   

2.
We present a simple and efficient technique for the generation of ultrashort deep-ultraviolet pulses based on four-wave mixing of noncollinear laser pulses in a thin solid. Sub-30-fs pulses (Fourier-limit of 13 fs) centered at 270 nm, with energies up to 6 μJ, were obtained by mixing the fundamental and the second harmonic of a Ti:sapphire amplifier in fused silica. Temporal characterization was performed with a dispersionless self-diffraction FROG setup. Spectra as broad as 20 nm were also obtained that can in principle support sub-4-fs deep-ultraviolet pulses.The results are well described by two-dimensional numerical simulations.  相似文献   

3.
Hamm P  Kaindl RA  Stenger J 《Optics letters》2000,25(24):1798-1800
An experimental and theoretical study of intrinsic correlations and noise-suppression mechanisms in two-stage femtosecond mid-IR light sources is presented. The setup, based on parametric amplification in BBO and subsequent difference-frequency mixing in AgGaS(2), delivers approximately 100-fs mid-IR pulses with 1-2-muJ energy. Exceptionally low pulse-energy fluctuations of only 0.2% in the mid-IR (lambda approximately 3-6 mum) are found, which are much smaller than the Ti:sapphire amplifer noise. The noise suppression is analyzed and found to stem from the interplay between dispersion and pump depletion.  相似文献   

4.
We present a scheme to produce programmable phase- and amplitude-modulated femtosecond laser pulses in the mid-infrared regime of 3-10mum by difference frequency mixing. The 80-fs signal output of an optical parametric amplifier is shaped with a liquid-crystal mask and mixed in an AgGaS(2) crystal with a temporally stretched idler pulse. Without changing the mechanical alignment, we produce programmable amplitude modulations and chirped pulses at lambda=3mum with energy as high has thas 1muJ . This scheme, further, allows the generation of controllable pulse sequences. The results are in good agreement with theoretical simulations.  相似文献   

5.
研究和建议了一种用于产生亚12fs脉冲的基于脉冲波前匹配的LBO超宽带光学参量啁啾脉冲放大器。实验结果表明LBO超宽带光学参量啁啾脉冲放大器可以输出大于60nm(FWHM)的增益光谱带宽,为了利用这种放大器产生转换限制的脉冲输出,给出了一种将超宽带光学参量啁啾脉冲放大器与脉冲波前匹配相结合的方法,这种方法等价于信号光脉冲波前无斜置的放大,克服了超宽带参量啁啾脉冲放大器中由于信号光的脉冲波前斜置而导致很难获得最短压缩脉冲输出的缺陷,从而允许产生转换限制的亚12fs脉冲。  相似文献   

6.
We demonstrate shaping of high-energy broadband Yb amplifier pulses for the generation of a (sub)picosecond top-hat temporal pulse profile that significantly improves pumping efficiency of an optical parametric amplifier (OPA). Phase-only modulation is applied by an acousto-optic programmable dispersion filter. This simple scheme is scalable to a high average power due to a relatively broad bandwidth of the Yb:CaF(2) gain medium used in the amplifier that supports a sub-150-fs transform-limited pulse duration. Additionally we show that OPA seeding with supercontinuum remains possible because top-hat-shaped pulses passed through a glass block recompress to ≈200 fs with minimum satellite production.  相似文献   

7.
We report the routine generation of sub-5-fs laser pulses with 1-mJ energy and stable carrier–envelope phase at 1-kHz repetition rate, obtained by compressing the multi-mJ output from a phase-locked Ti:sapphire amplifier in a rare-gas-filled hollow fiber. The dual-stage amplifier features a hybrid transmission grating/chirped mirror compressor providing 2.2-mJ, 26-fs pulses at 1 kHz with standard phase deviation of 190 mrad rms. We demonstrate hour-long phase stability without feedback control of grating position or rigorous control of the laser environment, simply by using small pulse stretching factors in the amplifier, which minimize the beam pathway in the compressor. The amplifier also integrates a versatile AOPDF (acousto-optic programmable dispersive filter) for closed-loop spectral phase optimization. The various factors influencing the overall phase stability of the system are discussed in detail. Using the optimized output, 1-mJ, 4.5-fs pulses are generated by seeding the neon gas filled hollow fiber with a circularly polarized input beam. A standard phase deviation of 230 mrad after the HCF is obtained by direct f-to-2f detection and slow-loop feedback to the oscillator locking electronics without any additional spectral broadening.  相似文献   

8.
Phase-matched difference-frequency mixing in a thin GaSe crystal within the broad spectrum of 25-fs pulses from a Ti:sapphire oscillator multipass amplifier system permits the generation of few-cycle electric field transients, frequencies up to 30 THz, and amplitudes of more than 1 MV/cm. The field transients generated at a 1-kHz repetition rate are directly measured by electro-optic sampling by 12-f probe pulses from the 75-MHz repetition-rate Ti:sapphire oscillator in combination with a novel electronic gating technique.  相似文献   

9.
Rotermund F  Petrov V 《Optics letters》2000,25(10):746-748
We demonstrate a novel traveling-wave-type optical parametric generator based on 1.25-microm pumping of HgGa(2)S(4) that produces tunable, high-power, transform-limited infinity 200-fs pulses in the mid-IR from 5 to 9 microm. Output idler energies on the microjoule level are obtained with maximum conversion efficiency of 11% for the amplifier stage, which is more than two times better than the results obtained with an analogous sample of the widely spread material AgGaS(2).  相似文献   

10.
We demonstrate the generation of ultraviolet 33-fs pulses with a shot-to-shot energy fluctuation of less than 3% using sum frequency mixing of visible pulses of a noncollinear optical parametric amplifier with sub-40-fs pulses of a 1-kHz Ti:sapphire-amplified system. The pulses are transform-limited (ΔνΔτ=0.36) and tunable in the range from 315 nm to 355 nm with energy above 1 μJ (2.6 μJ at 330 nm). Received: 21 July 2000 / Published online: 8 November 2000  相似文献   

11.
Generation of sub-20-fs UV pulses with more than 300 μJ energy at 268 nm is reported. First, the UV pulses are produced by successive second-harmonic and third-harmonic (TH) generation of 805 nm pulses of a 1 kHz Ti:sapphire laser amplifier. The spectral broadening of TH pulses is realized in a filament, generated in argon. The produced pulses are compressed in a simple double-pass prism-pair compressor. Starting from 100 fs pulses, we achieve a fivefold pulse shortening.  相似文献   

12.
A noncollinear optical parametric amplifier is presented that generates transform-limited sub-10-fs pulses that are tunable in both the visible and the near infrared (NIR). The pulse-front-matched pump geometry realizes tilt-free signal amplification, and pulses as short as 6.1 fs can be obtained from 550 to 700 nm. The large angular dispersion of the idler specific to the group-velocity-matching interaction is effectively eliminated by a grating-telescope compensator, and 9-fs NIR pulses are also successfully obtained from 900 to 1300 nm. This is believed to be the first tunable sub-10-fs light source.  相似文献   

13.
Frequency-doubled pulses from a sub-40-fs, 1-kHz Ti:sapphire amplifier system are spectrally broadened in an argon-filled hollow waveguide. Compression of the self-phase-modulated pulses is implemented with chirped mirrors and a prism pair, yielding 8-fs, 15-muJ pulses in the violet spectral range.  相似文献   

14.
《中国物理 B》2021,30(9):94206-094206
A high efficiency compact Yb:KGW regenerative amplifier using an all-fiber laser seed source was comprehensively studied. With thermal lensing effect compensated by the cavity design, the compressed pulses with energy of 1 m J at 1 k Hz and 0.4 m J at 10 k Hz in sub-400-fs pulse duration using chirped fiber Bragg grating(CFBG) stretcher were demonstrated.A modified Frantz–Nodvik equation was developed to emulate the dynamic behavior of the regenerative amplifier. The simulation results were in good agreement with the experiment. Numerical simulations and experimental results show that the scheme can be scalable to higher energy of multi-m J, sub-300 fs pulses.  相似文献   

15.
Miyata K  Petrov V  Noack F 《Optics letters》2011,36(18):3627-3629
Third-harmonic generation of high-intensity, sub-100-fs idler pulses from a Ti:sapphire-laser-pumped optical parametric amplifier is demonstrated by using a single nonlinear crystal of BiB?O? (BIBO). Maximum internal energy conversion as high as 11% from the fundamental to the third harmonic is achieved by phase- and group-velocity matching for the direct cubic nonlinear process together with the velocity-mismatched cascading quadratic processes.  相似文献   

16.
We report our studies on a fiber-optic soliton compressor for generation of sub-100 femtosecond (fs) optical pulses out of picosecond (ps) diode laser pulses. The soliton compressor is rather simple and composed of a 15 ~ 20 m-long step-like dispersion profiled fiber (SDPF) in conjunction with a single Er-doped fiber amplifier (EDFA). Careful design of such a SDPF compressor was performed, leading to demonstration of 20-fs class compression performance, and experimental investigation was carried out in detail on the optical pulse propagation in the compression processes. In addition, nonlinear fiber loops were applied to suppression of pulse pedestals, resulting successfully in high quality optical pulses of the 100-fs range.  相似文献   

17.
Wilhelm T  Piel J  Riedle E 《Optics letters》1997,22(19):1494-1496
Femtosecond pulses with center wavelengths between 470 and 750 nm are generated in a single-stage type I BBO optical parametric amplifier pumped by a frequency-doubled 1-kHz Ti:sapphire amplifier. A high-quality white-light continuum is used as the seed. Pulse durations as short as 16 fs and pulse energies of as much as 11 microJ are observed. The quantum efficiency is ~25% for both 7- and 40-microJ pump pulses. This unique combination of ultrashort pulse duration and high conversion is made possible by noncollinear phase matching that permits a sufficiently large amplification bandwidth. Simultaneously the group velocities of the signal and the idler are effectively matched. As a result widely tunable sub-20-fs pulses can be generated in a nonlinear crystal as thick as 2 mm.  相似文献   

18.
We report on the generation of sub-30-fs near-IR light pulses by means of broadband four-wave parametric amplification in fused silica. This is achieved by frequency downconversion of visible broadband pulses provided by a commercial blue-pumped beta-barium borate crystal-based noncollinear optical parametric amplifier. The proposed method produces the IR idler pulses with energy up to ~20 μJ and tunable in wavelength from 1 to 1.5 μm. The shortest pulse duration is 17.6 fs, measured at 1.2 μm.  相似文献   

19.
We use sub-10-fs pulses at 400 nm and 15-fs pulses at 800 nm to ionize water molecules and their isotopomers HDO and D2O in a pump–probe scheme. Pulses are generated via spectral broadening of 25-fs pulses of a 1-kHz Ti:sapphire amplifier system by self-phase modulation in a noble-gas-filled hollow waveguide and subsequent compression using chirped mirrors. At this time scale vibronic excitation of the first bending mode of water in the electronic ground state by impulsive Raman scattering is possible (e.g. the fundamental bending mode of H2O: tvib=20 fs). The effect of this pre-excitation on the ionization rate is shown. Received: 14 May 2001 / Revised version: 24 August 2001 / Published online: 19 September 2001  相似文献   

20.
We demonstrate an order-of-magnitude energy scaling of a white-light seeded noncollinear optical parametric amplifier in the visible. The generated pulses, tunable between 520 and 650 nm with sub-25-fs duration, had energies up to 310 microJ with 20% blue-pump-to-signal energy conversion efficiency at 540 nm. This new ultrafast source will make possible numerous extreme nonlinear optics applications. As a first application, we demonstrate the generation of tunable vacuum ultraviolet pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号