首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
兰蓥华  林亚惠  牛雅文  张燕辉 《化学通报》2023,86(5):568-574,522
光催化氧化-还原体系能够同时驱动光催化氧化反应和还原反应,产生协同效应,从而提高光催化反应的活性。在此,提出了构建光催化氧化-还原体系的原则,并介绍了光催化还原硝基芳烃耦合氧化有机物、光催化还原重金属离子协同氧化有机物、光解水制氢协同氧化有机物三个方面的实例。接着,阐述了光催化氧化-还原体系的反应机理,期望通过构建光催化氧化-还原体系,更有利于太阳能转化并缓解环境和能源问题。  相似文献   

2.
Self-assembled molecular aggregates of fluoroalkyl end-capped N-(1,1-dimethyl-3-oxobutyl)acrylamide oligomer can solubilize cytochrome c in organic media such as methanol, although the corresponding non-fluorinated polymer cannot solubilize cytochrome c in organic media. Interestingly, the resulting fluorinated oligomer-cytochrome c aggregate was found to act effectively as a new fluorinated biocatalyst for the oxidation of pinacyanol chloride with hydrogen peroxide in the non-aqueous methanol.  相似文献   

3.
The achievements and prospects in the use of aqueous hydrogen peroxide solutions prepared by cathodic reduction of oxygen in carbon black gas-diffusion and graphite electrodes for indirect oxidation of organic and inorganic substrates in situ are analyzed. Specific examples demonstrate the efficiency of using hydrogen peroxide solutions for in situ indirect electrocatalytic oxidation of organic and inorganic substrates to target products (indirect electrochemical synthesis), for decomposition (mineralization) of organic and inorganic pollutants in industrial waters and wastewaters, and for preparation of organic peroxy acids and inorganic peroxy solvates.  相似文献   

4.
Water molecule contains one oxygen and two hydrogen atoms, making it a potential oxygen and hydrogen source. Electrocatalytic organic reduction and oxidation using water as oxygen and/or hydrogen donors provide an environmentally friendly and sustainable strategy to replace traditional chemical‐driven stoichiometric reactions that use sacrificial reagents. Furthermore, the development of electrochemical synthesis provides a potential application for low tension photoelectricity, which is not cost‐effective during boosted voltage and application. In the last decade, electrocatalytic redox reactions of organic molecules in aqueous media had shown progress owing to the development of electrode materials and water‐splitting technology. This paper highlights several electrocatalytic systems and corresponding mechanisms for both hydrogenation and oxidative transformation of representative compounds. The activation process of protons and water on the working electrode surface has received special focus. Furthermore, paired electrolysis using water as the oxygen and hydrogen source has been demonstrated. This paired system combines hydrogenation and oxidation half‐reactions in one cell using water as the hydrogen and oxygen source, resulting in high atomic and electron utilization rates.  相似文献   

5.
过氧化氢既可用作环境友好的绿色氧化剂,也可用作燃料电池中的太阳能燃料,因而受到越来越多的关注.本文综述了太阳能驱动分子氧氧化水制备过氧化氢及其作为绿色氧化剂和燃料的研究进展.利用太阳能将水的e-和4e-氧化与分子氧的e-还原相结合,使光催化生产过氧化氢成为可能;本文讨论了与e-和4e-水氧化选择性及e-和4e-氧还原选择性相关的催化反应控制.由于光催化e-氧化水和e-还原分子氧的过程都产生过氧化氢,因此该组合的催化效率较高.太阳能光驱动水氧化及分子氧还原生产过氧化氢与过氧化氢催化氧化底物相结合,在该过程中分子氧用作最环保的氧化剂.  相似文献   

6.
Functionalized ormosil-modified electrodes have been developed for electroanalytical applications. The functionalized ormosil-modified electrodes are made by encapsulating potassium ferricyanide/potassium ferrocyanide within ormosil film derived from an optimum composition of 3-aminopropyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyl trimethoxysilane and phenyltrimethoxy silane in acidic medium in absence of Nafion/crown ether (system 1), in the presence of Nafion (system 2) and in the presence of dibenzo-18-crown-6 (system 3). Another modified electrode (system 4) is also developed using the reaction product of potassium ferricyanide, 3-aminopropyltrimethoxysilane and either tetrahydrofuran (THF) or cyclohexanone followed by ormosil formation in the presence of 2-(3,4-epoxycyclohexyl)ethyl trimethoxysilane and phenyltrimethoxy silane in acidic medium. The electrochemical oxidation of hydrogen peroxide and ascorbic acid conducted at the surface of these four types of functionalized electrodes shows very interesting observations on the selective sensing of ascorbic acid and peroxide. The results based on cyclic voltammetry justify the relative performances on the kinetics of hydrogen peroxide oxidation and reduction. System 3 shows relatively much better oxidation kinetics of hydrogen peroxide as compared to other three systems with relatively weak reduction kinetics whereas system 4 shows relatively faster reduction kinetics of hydrogen peroxide as compared to other three systems. Similarly system 4 shows excellent response to ascorbic acid whereas system 3 shows insensitivity to ascorbic acid under similar experimental conditions. Typical response curve for the analysis of hydrogen peroxide and ascorbic acid using system 3 and system 4 respectively are reported. The results show that system 3 is the best for probing hydrogen peroxide with lowest detection limit of 0.5 μM without any interference from ascorbic acid as commonly encountered using many conventional and chemically modified electrodes.  相似文献   

7.
Initiation of the reaction between hydrogen sulfide and aliphatic, aromatic, and heteroaromatic hydrocarbons in acetonitrile using the binary system organic base-anode is described. The reaction of hydrogen sulfide with nitrogen-containing organic bases is studied by means of cyclic voltammetry. The reaction of hydrogen sulfide with triethylamine leads to the formation of thiolate anion. The next step o reaction is electrochemical oxidation of the thiolate anion that to lead thiyl radical formation in situ thiyl radicals. In the presence of binary system on the basis of hydrogen sulfide aliphatic, aromatic, and heteroaromatic thiols and sulfides are formed at room temperature.  相似文献   

8.
Solar production of hydrogen by consuming low‐value waste products is an attractive pathway that has both economic and environmental benefits. Inspired by the reactive pocket of enzymes, a synthetic platform to combine photocatalytic hydrogen evolution with sulfide oxidation in a one‐pot process via control over the location of the electron‐transfer steps is developed. The redox‐active coordination vessel Ni‐ TFT , which has an octahedral pocket, encapsulates an organic dye to pre‐organize for photocatalytic proton reduction via an oxidative quenching pathway using the nickel corners as catalysts, generating molecular hydrogen and the oxidized dye. The oxidized dye is displaced by a neutral dye and oxidizes sulfide once outside the pocket to give element sulfur. The overall reaction constitutes hydrogen sulfide splitting, forming molecular hydrogen and elemental sulfur, which is analogous to the water‐splitting reaction.  相似文献   

9.
《Tetrahedron: Asymmetry》2005,16(18):3077-3083
Several organic sulfides, ketones and other organic systems have been tested as substrates in oxidation reactions catalyzed by the recently discovered phenylacetone monooxygenase from Thermobifida fusca. The biocatalytic properties of this Baeyer–Villiger monooxygenase have been studied, revealing reactivity with a large range of sulfides and ketones. Oxidations of several sulfoxides, an amine and an organoboron compound were also observed. The enzyme is able to oxidize a number of sulfides with excellent enantioselectivity, demonstrating the catalytic potential of this novel biocatalyst.  相似文献   

10.
《Tetrahedron: Asymmetry》2006,17(12):1769-1774
A broad range of prochiral ketones were efficiently reduced to the corresponding optically active secondary alcohols using resting cells of Rhodotorula sp. AS2.2241. The microbial reduction system exhibited high activity and enantioselectivity in the reduction of various aromatic ketones and acetylpyridines (>97% ee), but moderate to high enantioselectivity in the reduction of α- and β-keto esters. (R)-Nifenalol, a β-adrenergic blocker, was also synthesized using 2-bromo-1(R)-(4-nitrophenyl)ethanol (97% ee) which was prepared through the asymmetric reduction of 2-bromo-1-(4-nitrophenyl)ethanone employing Rhodotorula sp. AS2.2241. The simple preparation and the high activity of the biocatalyst turned this system into a versatile tool for organic synthesis.  相似文献   

11.
A survey of the literature covering the destruction of organic pollutants accomplished under mild reaction conditions is presented. Technologies presented are segregated according to two main reaction pathways; oxidation and reduction. Sub-topics discussed are representative of the main component of the degradation system, including the following; electrochemical reactors, hydrogen as a reducing agent, zero-valent metals, biological based systems, photolytic processes, Fenton reaction, and a recently discovered process that is a form of room temperature and pressure oxygen activation.  相似文献   

12.
The platinum-palladium/Nafion metal—polymer nanocomposites were synthesized by chemical reduction of metal ions in water—organic reverse microemulsion solutions. The catalytic activity of the synthesized polymer composites with bimetallic Pt—Pd nanoparticles was estimated in the oxidation of hydrogen and formic acid.  相似文献   

13.
The biotransformation of terpenoids using the plant pathogenic fungus as a biocatalyst to produce useful novel organic compounds was investigated. The biotransformation of sesquiterpen alcohol, (+)-cycloisolongifolol (1) was investigated using plant pathogenic fungus Glomerella cingulata as a biocatalyst. Compound 1 gave one major metabolic product and a number of minor metabolic products. Major product was dehydration at the C-8 position to (+)-dehydrocycloisolongifolene (2). The structure of the product was determined by their spectroscopic data. Glomerella cingulata gave dehydration in the specifically and over 70% conversion.  相似文献   

14.
Biological removal of organic sulfur from petroleum feedstocks offers an attractive alternative to conventional thermochemical treatment, because of the mild operating conditions afforded by the biocatalyst. In order for biodesulfurization to realize commercial success, reactors must be designed that allow for sufficient liquid-liquid and gas-liquid mass transfer, while simultaneously reducing operating costs. Electro-spray bioreactors were investigated for use as desulfurization reactors because of their reported operational cost savings relative to mechanically agitated reactors. Unlike batch-stirred reactors, which mix the biocatalystcontaining aqueous phase with the organic feedstock by imparting momentum to the entire bulk solution, electro-spray reactors have the potential for tremendous cost savings, creating an emulsion <5 (μm in diameter, at a cost of only 3 W/L. Power law relationships indicate that mechanically stirred reactors would require 100-1000-fold more energy to create such a fine emulsion, but these relationships generally do not account for the effect of endogenously produced surfactant in the system. Here, the rates dibenzothiophene (DBT) oxidation to 2-hydroxybiphenyl (2-HBP) in hexadecane, byRhodococcus sp IGTS8 are compared in the two reactor systems. Desulfurization rates ranged from 1.0 to 5.0 mg 2-HBP/(dry g cells · h), independent of the reactor employed. The batch-stirred reactor was capable of forming a very fine emulsion in the presence of the biocatalyst IGTS8, similar to that formed in the emulsion phase contactor (EPTM), presumably because the biocatalyst produces its own surfactant. Although EPC did not prove to be advantageous for the IGTS8 desulfurization system, it may prove advantageous for systems that do not produce surface-active bioagents, in addition to being mass-transport limited.  相似文献   

15.
The adsorption and catalytic activity of myoglobin (Mb) on zirconium phosphonates (a-zirconium benzenephosphonate (alpha-ZrBP), a-zirconium carboxyethanephosphonate (alpha-ZrCEP), and a novel layered zirconium fluoride aminooctyl-N,N-bis(methylphosphonate) (ZrC8)) were investigated. The maximum adsorption was reached after 16 h of contact and was greater on hydrophobic supports such as alpha-ZrBP and ZrC8 compared to hydrophilic supports such as alpha-ZrCEP. The equilibrium adsorption isotherms fitted the Langmuir equation, suggesting the presence of a monolayer of protein molecules on the support surfaces. The catalytic activities of free Mb and of the obtained biocomposites were studied in terms of the oxidation of two aromatic substrates, o-phenylenediamine and 2-methoxyphenol (guaiacol), by hydrogen peroxide. The oxidation catalyzed by immobilized myoglobin followed the Michaelis-Menten kinetics, similar to oxidation by free Mb. The kinetic parameters, kcat and KM, were significantly affected by the adsorption process. Mb/alpha-ZrCEP was the most efficient biocatalyst obtained, probably because of the hydrophilic nature of the support. The effect of immobilization on the stability of Mb toward inactivation by hydrogen peroxide was also investigated, and an increased resistance was found. The biocomposites obtained can be stored at 4 degrees C for months without a significant loss of catalytic activity.  相似文献   

16.
The green oxidation technology is the most economically attractive and environmentally friendly oxidation technique in the treatment of organic pollutants. Photocatalytic degradation of organic pollutants by iron species is a desired green oxidation technique due to using hydrogen peroxide or ideally molecular oxygen as oxidant and water as solvent. However, the system has some disadvantages. The reaction has to be performed in acidic conditions in order to avoid Fe ion precipitation and iron sludge will be accumulated in the reaction. Moreover, the utilization of H(2)O(2) means a high cost and risks in the storage and transportation and organic pollutants can not be completely mineralized. In this perspective, we report a systematic investigation of the improvement in the Fenton system for treatment of organic pollutants in water. Several strategies have been studied on the Fenton system for overcoming the above mentioned shortcomings and enhance the efficiency. For example, in order to extend the application of the Fenton system and perform it at neutral pH, iron complexes were used to replace the Fe(2+)/Fe(3+). Moreover, iron complexes have a strong absorption in the visible region, which leads to decomposition of colorless organic pollutants under visible light irradiation. Iron complexes with special structures can activate molecular O(2) instead of H(2)O(2) under mild conditions and the supported iron species maintains a high catalytic activity after repeated use and can be reused simply by filtration. Finally, prospects for further work required to be performed for its practical application is discussed.  相似文献   

17.
氯过氧化物酶的手性催化活性在有机合成中的应用   总被引:2,自引:0,他引:2  
氯过氧化物酶(CPO)作为过氧化物酶家族中的一员对多种有机底物表现出了广泛的催化活性。自上世纪60年代被发现以来,CPO在有机合成中的应用一直是一个研究热点。它作为一种生物催化剂能催化广泛的底物合成手性化合物,且有高的产率和高的对映选择率。本文综述了氯过氧化物酶在手性有机合成中的应用,重点关注了卤化、醇氧化、羟基化、环氧化、磺化氧化等反应,并讨论了目前在该领域所面临的问题及今后的发展趋势。  相似文献   

18.
多孔金属氧化物具有高比表面积、大孔径、特殊的形貌和结构特性,广泛应用于催化、锂离子电池、太阳能电池、气敏传感器等领域。金属有机骨架材料(MOFs)是一类具有周期性网络结构的新型多孔晶体材料,在气体存储、气体分离、催化等领域具有重要的应用价值。近年来,以MOFs为前驱体制备多孔碳和多孔金属氧化物成为MOFs应用领域一个新的研究热点。本文主要综述了以MOFs为前驱体制备的多孔金属氧化物和多孔金属氧化物/碳复合物在CO氧化、催化产氢、异丁烷脱氢、环已烯氧化、醇直接氧化为酯、醛氧化酰胺化反应、光催化降解有机物和氧还原反应等方面的应用。  相似文献   

19.
High mineralization degree of organic compounds can be achieved by a novel environmentally-friendly full heterogeneous Pd-Fe catalytic system, which involves in situ generation of hydrogen peroxide from formic acid and oxygen, and oxidation of organic compounds by Fenton process in a one-pot reaction.  相似文献   

20.
The main dynamic characteristics of biochemical methanol formation by the oxidation of methane using a biocatalyst were studied. The biocatalyst is based on cells of bacteria Methylosinus sporium B-2121, both suspended in a medium and immobilized in the poly(vinyl alcohol) cryogel. The change in the methane concentration and the biocatalyst amount affects the productivity of the system, the maximal concentration of methanol in the cultural liquid, and the rate of methanol accumulation. The most part of the dynamic characteristics are described by extremal curves. The experimental conditions were optimized prior to experiments. The use of the immobilized biocatalyst makes it possible to enhance the productivity of the process more than fivefold compared to that of the free cells and to achieve the highest methanol concentration in the medium: 62±2 mg L−1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1603–1606, August, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号