首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
We have prepared a UV-responsive polymeric superamphiphile, formed by a malachite green derivative and the double hydrophilic block copolymer methoxy-poly(ethylene glycol)(114)-block-poly(l-lysine hydrochloride)(200) (PEG-b-PLKC) on the basis of electrostatic interactions. The malachite green derivative undergoes photo-ionization upon UV irradiation, which makes it more hydrophilic, resulting in changes in the self-assembly behavior of the polymeric superamphiphile. For this reason, the polymeric superamphiphile originally self-assembles to form sheetlike aggregates, which disassemble after UV irradiation because of the increased solubility of the malachite green derivative. By use of Nile red as a probe, the polarity of the polymeric superamphiphile solution is confirmed to be increased after UV irradiation by fluorescence spectra, which also explains the disassembly of the polymeric superamphiphile.  相似文献   

2.
The photo‐induced association and dissociation of poly(sodium acrylate) containing a small amount of photoresponsive malachite green (MG) in aqueous solution were studied. It is known that MG dissociates into ion pairs under UV irradiation to produce the green triphenylmethyl cation. The cation thermally recombines with its counter anion to regenerate the colorless neutral compound. The random copolymer of acrylic acid with 0.05 mol % of MG monomer [P(A/MG0.05)] was soluble in aqueous 0.01 M NaCl at pH 12 as a unimer due to electrostatic repulsion between carboxylate pendent groups when the MG moieties were in the neutral form. On the other hand, these MG groups were converted to the cationic form on UV irradiation, leading to polymer aggregation driven by electrostatic interactions between the cationic MG and anionic carboxylate pendent groups. These aggregates could be dissociated by heating in the dark, as the cationic MG reverted to its neutral form, eliminating these attractive electrostatic interactions. The association and dissociation of the copolymer was monitored by dynamic light scattering (DLS). When the salt concentration in aqueous solutions of P(A/MG0.05) was increased from 0.01 to 0.5 M at pH 12, no aggregation was observed on UV irradiation because of ionic screening of the aforementioned electrostatic interactions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
A single-stranded human telomere DNA sequence can fold into an intramolecular G-quadruplex structure, which has been shown to inhibit telomerase activity. Small molecules that selectively target and stabilise the G-quadruplex structure have been proposed as potential anticancer drugs. In this study, we analysed the properties of binding of malachite green, a cationic triphenylmethane dye, to the G-quadruplex of d[(T2AG3)4] by UV spectroscopy of thermal melting analysis, a competitive equilibrium dialysis assay, and absorption and circular dichroism spectroscopies. When binding to malachite green, the quadruplex structure that formed in the presence of K+ ions was stabilised with an increase in melting temperatures by 6 °C. Malachite green showed selective binding to the G-quadruplex in the presence of duplex and single-stranded DNAs, owing to which it presents higher potential for anticancer therapy, compared to other triphenylmethane dyes. The induced signals of circular dichroism indicate that the binding mode of malachite green involves intercalation between adjacent guanine tetrads of the G-quadruplex.  相似文献   

4.
The underlying mechanism of UV light-induced dissociation and visible light-induced reformation of vesicles formed by an azobenzene diblock copolymer was investigated. These processes were studied in situ by monitoring changes in optical transmittance of the vesicular solution while being exposed to UV or visible light irradiation. The results indicate that the UV-induced dissociation of the vesicles results from their thermodynamic instability due to a shift of the hydrophilic/hydrophobic balance arising from the trans-cis isomerization, while their reaggregation takes place upon visible light irradiation that shifts the hydrophilic/hydrophobic balance in the opposite direction after the reverse cis-trans isomerization. The study suggests a specific design principle for obtaining UV light-dissociable and visible light-recoverable vesicles based on azobenzene block copolymers. On one hand, the structure of azobenzene moiety used in the hydrophobic block should have a small (near zero) dipole moment in the trans form and a significantly higher dipole moment in the cis form, which ensures a significant increase in polarity of the hydrophobic block under UV light irradiation. On the other hand, the hydrophilic block should be weakly hydrophilic. The conjunction of the two conditions can make the light-induced shift of the hydrophilic/hydrophobic balance important enough to lead to the reversible change in vesicular aggregation.  相似文献   

5.
In this study photoinduced cation generation, based on the photochemical properties of malachite green (MG), was used for the surface design and in vitro photochemical control of cell adhesion and proliferation. The MG-derivatized surface was prepared by coating a photoreactive polymer as a substrate onto a poly(ethylene terephthalate) (PET) sheet. The photoreactive polymer was radical copolymer of styrene with the MG-derivatized monomer diphenyl(4-vinylphenyl)methane leucohydroxide (degree of substitution of MG unit: 12.4 mol%). Water contact angle measurements and X-ray photoelectron spectroscopy revealed high hydrophobicity and homogeneous distribution of the MG groups on the outermost surface of the coated film, respectively. When the coated film was exposed to ultraviolet light (UV) irradiation at wavelengths of 290-410 nm, a time-dependent color change of the film was observed from pale yellow, before irradiation, to green. These results indicated generation of cations on the film surface by photochemical cation generation of the MG groups, which was quantitatively characterized by force versus distance curves measurements in atomic force microscopic (AFM) observation using a carboxylated AFM tip. The seeding and culture of endothelial cells showed a marked reduction in adhesion on the nonirradiated coated film surface, whereas the UV-irradiated surface promoted cell adhesion and proliferation except for incubation in serum-free medium, which was similar to commercial tissue culture PET sheet. These observations may be due to adsorption of cell adhesive proteins, typified by fibronectin, in serum-containing medium onto the cationized photoreactive copolymer surface by electrostatic interactions.  相似文献   

6.
A metal-organic framework (MOF) for reversible alteration of guest molecule adsorption, here carbon dioxide, upon photochemical or thermal treatment has been discovered. An azobenzene functional group, which can switch its conformation upon light irradiation or heat treatment, has been introduced to the organic linker of a MOF. The resulting MOF adsorbs different amount of CO(2) after UV or heat treatment. This remarkable stimuli-responsive adsorption effect has been demonstrated through experiments.  相似文献   

7.
Aza-crown ethers 2 and 3 with anthracene-containing pendant arms have been synthesised and characterised. Both compounds bind Group 1 metal cations in solution, forming complexes of 1:1 stoichiometry. The properties of compound 2 and its complexes have been studied by a range of techniques, including NMR, UV and fluorescence spectroscopy and X-ray crystallography. The pendant arms can adopt either a cis or a trans geometry, the cis geometry favoured with larger cations. The geometry of the complex affects the fluorescence properties of the system, with larger cations giving higher excimer/monomer ratios. Upon irradiation at lambda>300 nm, coronand 2 forms the cryptand 5 through a reversible intramolecular [4pi+4pi] cycloaddition reaction. The rates of the forward and reverse reactions of this photochromic process are cation dependent; in particular the rate of the thermal reverse reaction is decreased by smaller cations and increased by larger cations, especially Rb(+). The metal binding constants in methanol for 2 and 5 have been determined, revealing that the cryptand 5 binds Na(+) and Rb(+) more weakly than crown ether 2 by over two orders of magnitude.  相似文献   

8.
Composite polymer electrolytes (CPEs) with smart, stimuli-responsive characteristics have gained considerable attention owing to their noninvasive manipulation and applications in future technologies. To address this potential, in this work, we demonstrate photoresponsive composite polymer electrolytes, consisting of gel polymer electrolyte (GPE) and spiropyran-immobilized nanoporous anodic aluminum oxide (SP-AAO) templates. Under UV irradiation, the close SP form isomerizes to the open merocyanine (MC) form, creating extremely polarized AAO surfaces; whereas, under visible light irradiation, the MC form reverts to the SP form, creating neutral surface conditions. The electrostatic interactions between ions and AAO surfaces are investigated by attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Moreover, the behavior of ionic conductivity of the GPE@SP-AAO is found to be consistent with the kinetics of isomerization tracked by UV-Vis spectroscopy. This work provides a promising platform for developing next-generation photoelectronic smart devices.  相似文献   

9.
There is growing demand for novel methods that could render the controlled disassembly of higher-order structures formed, for example, by peptides. Herein, we demonstrate such a method based on the application of a photocaged variant of the amino acid lysine, namely, lys(Nvoc). Specifically, we introduce lys(Nvoc) into the primary sequence of the amyloidogenic peptide, Aβ(16-22), at a position where the native side chain is known to play a key role in fibril formation via hydrophobic interactions. Both AFM and infrared spectroscopic measurements indicate that the resultant Aβ(16-22) mutant is able to form fibrils whereas, more importantly, the fibrils thus formed can be completely disassembled upon irradiation with near-UV light, which cleaves the photolabile Nvoc moiety and triggers the restoration of the lysine side chain. These results suggest that the generation of a single charge in a highly hydrophobic region of the fibrils is sufficient to promote their dissociation. Thus, we envisage that the current approach will find useful applications wherein controlled structural disassembly or content release is required.  相似文献   

10.
A novel cinnamic acid-based dipeptide is designed and prepared from cinnamic acid and glycylglycine. In aqueous solution, the molecules can self-assemble into vesicular structures, which were characterized in detail by transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Aromatic stacking and intermolecular hydrogen bonding interactions are regarded as the driving force in the formation of the stable supramolecular structure. Subsequently, the stimuli-responsive property of the vesicles to UV irradiation was also studied. The vesicles were also found to be able to efficiently carry hydrophobic drugs. We believe that this study may provide more references in the fields of body-friendly smart materials with the hope of in vivo applications.  相似文献   

11.
Versatile photoresponsive gels based on tripodal low molecular weight gelators (LMWGs) are reported. A cyclohexane-1,3,5-tricarboxamide (CTA) core provides face-to-face hydrogen bonding and a planar conformation, inducing the self-assembly of supramolecular polymers. The CTA core was substituted with three arylazopyrazole (AAP) arms. AAP is a molecular photoswitch that isomerizes reversibly under alternating UV and green light irradiation. The E isomer of AAP is planar, favoring the self-assembly, whereas the Z isomer has a twisted structure, leading to a disassembly of the supramolecular polymers. By using tailor-made molecular design of the tripodal gelator, light-responsive organogels and hydrogels were obtained. Additionally, in the case of the hydrogels, AAP was coupled to the core through hydrazones, so that the hydrogelator and, hence, the photoresponsive hydrogel could also be assembled and disassembled by using dynamic covalent chemistry.  相似文献   

12.
A linear supramolecular architecture was successfully constructed by the inclusion complexation of α‐cyclodextrin with azobenzene and the host‐stabilized charge‐transfer interaction of naphthalene and a bispyridinium guest with cucurbit[8]uril in water, which was comprehensively characterized by 1H NMR spectroscopy, UV/Vis absorption, fluorescence, circular dichroism spectroscopy, dynamic laser scattering, and microscopic observations. Significantly, because it benefits from the photoinduced isomerization of the azophenyl group and the chemical reduction of bispyridinium moiety with noncovalent connections, the assembly/disassembly process of this supramolecular nanostructure can be efficiently modulated by external stimuli, including temperature, UV and visible‐light irradiation, and chemical redox.  相似文献   

13.
The assembly and disassembly of RecA-DNA nucleoprotein filaments on double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA) are important steps for homologous recombination and DNA repair. The assembly and disassembly of the nucleoprotein filaments are sensitive to the reaction conditions. In this work, we investigated different morphologies of the formed nucleoprotein filaments at low temperature under different solution conditions by atomic force microscopy (AFM). We found that low temperature and long keeping time could induce the incomplete disassembly of the formed nucleoprotein filaments. In addition, when the formed filaments were kept at -20 degrees C for 20 h with 1,4-dithiothreitol (DTT), the integrated filaments disassembled. It was similar to the case under the same condition without anything added. However, when glycerol was used as a substitute for DTT, there was no obvious disassembly at the same condition. Oppositely, when the formed filaments were kept at 4 degrees C for 20 h, the disassembly with additional DTT was not as obvious as the case at -20 degrees C for 20 h, whereas the case with additional glycerol disassembled. The experiments indicated the effect of cold denaturation on the interaction of DNA and RecA. Meanwhile, the study of these phenomena can supply guidelines for the property and stability of RecA as well as the relevant roles of influencing factors to RecA and DNA in further theoretical studies.  相似文献   

14.
A hydrophobic compound, which we name 3C18-Azo, containing an azo head and three 18 C alkyl chains has the capacity to form an amphiphile by capping it with a cyclodextrin (CD) by inclusion complexation. The amphiphilic compound self-assembles into vesicles in water. Optical switching of the assembly and disassembly is realized by alternating visible and UV irradiation, which causes the isomerization of the azo groups, thus affecting their complexation with the CDs.  相似文献   

15.
Two kinds of interlocked supramolecular complexes that display stimulus-responsive assembly and disassembly have been described. One is a pseudorotaxane driven by hydrogen-bonding interactions between rings 2a and 2b and rods 1a and 1b. The rods contain a binding site for the ring as well as a stimulus-responsive diazo group, both of which are conformationally constrained in parallel by connecting them to a rigid xanthene skeleton. The trans isomer of 1a bearing a rigid binding site cannot form the pseudorotaxanes with the rings 2a and 2b because the neighboring diazophenyl group sterically shields the binding site. However, when trans-1a was converted to the corresponding cis-1a by UV light, the pseudorotaxanes are immediately formed with association constants of 70 +/- 10 M(-1) and (1.1 +/- 0.1) x 10(3) M(-1) for 2a and 2b, respectively, in CDCl3 at 24 +/- 1 degrees C. The pseudorotaxanes are completely disassembled into their molecular component when heated at 80-85 degrees C for 20 min. The assembly and disassembly processes can be reversibly cycled by repeating irradiation and heating alternatively. In the case of the rod 1b that possesses a flexible binding site, both cis and trans isomers can form the corresponding pseudorotaxanes with association constants of (2.0 +/- 0.3) x 10(2) M(-1) for 2a and trans-1b and of (7.4 +/- 0.5) x 10(2) M(-1) for 2a and cis-1b in CDCl3 at 24 +/- 1 degrees C. In this system, therefore, external stimuli can modulate the relative distribution of the pseudorotaxane and its components. Finally, the work was extended to the construction of a kinetically more stable molecular machine based on a rotaxane-like complex 10.11 between a metallocycle 11 and a dumbbell 10. In this system, the complex and its components showed separate sets of the signals, not the averaged, in 1H NMR spectroscopy as expected by the increased kinetic stability.  相似文献   

16.
In moderately acidic aqueous solutions, flavylium compounds undergo a pH‐, and in some cases, light‐dependent array of reversible chemical reactions. This network can be described as a single acid–base reaction involving a flavylium cation (acidic form) and a mixture of basic forms (quinoidal base, hemiketal and cis and trans chalcones). The apparent pKa of the system and the relative mole fractions of the basic forms can be modulated by the interaction with cucurbit[7]uril. The system is studied by using 1H NMR spectroscopy, UV/Vis spectroscopy, flash photolysis, and steady‐state irradiation. Of all the network species, the flavylium cation possesses the highest affinity for cucurbit[7]uril. The rate of interconversion between flavylium cation and the basic species (where trans‐chalcone is dominant) is approximately nine times lower inside the cucurbit[7]uril.  相似文献   

17.
We describe a new class of photorheological (PR) fluids whose rheological properties can be reversibly tuned by light. The fluids were obtained by doping lecithin/sodium deoxycholate (SDC) reverse micelles with a photochromic spiropyran (SP) compound. Initially, the lecithin/SDC/SP mixtures formed highly viscoelastic fluids, reflecting the presence of long, wormlike reverse micelles. Under UV irradiation, the SP was isomerized to the open merocyanine (MC) form, causing the fluid viscosity to decrease 10-fold. When the UV irradiation was switched off, the MC reverted to the SP form, and the viscosity recovered its initial value. This cycle could be repeated several times without loss of response. The rheological transitions are believed to reflect changes in the lengths of the reverse worms. To our knowledge, this is the first example of a simple, reversible PR fluid that can be made entirely from commercially available components.  相似文献   

18.
Stimuli-responsive switching molecules have been widely investigated for the purpose of the mechanical control of biomolecules. Recently developed arylazopyrazole (AAP) shows photoisomerization activity, displaying a faster response to light-induced conformational changes and unique absorption spectral properties compared with those of conventionally used azobenzene. Herein, it is demonstrated that AAP can be used as a photoswitching molecule to control photoinduced assembly and disassembly of DNA origami nanostructures. An AAP-modified DNA origami has been designed and constructed. It is observed that the repeated assembly and disassembly of AAP-modified X-shaped DNA origami and hexagonal origami with complementary strands can be achieved by alternating UV and visible-light irradiation. Closed and linear assemblies of AAP-modified X-shaped origami were successfully formed by photoirradiation, and more than 1 μm linear assemblies were formed. Finally, it is shown that the two photoswitches, AAP and azobenzene, can be used in tandem to independently control different assembly configurations by using different irradiation wavelengths. AAP can extend the variety of available wavelengths of photoswitches and stably result in the assembly and disassembly of various DNA origami nanostructures.  相似文献   

19.
Symmetric polymerizable α,ω-dipolar C22-diacetylenes were prepared by oxidative coupling of 10-undecynoic acid and 10-undecynol, respectively, by means of copper II salts in ethanolic solution. 10,12-Docosadiyne-1,22-diphosphate ( 3 )—by reaction of 10,12-docosadiyne-1,22-diol ( 2 ) with POCl3—was polymerized in aqueous solution using UV irradiation to form deep blue, thermochromic solutions. By consonication of 3 with cholesterol, monolayer vesicles were formed. This was proven by encapsulation of 6-carboxyfluorescein. These monomeric vesicles were polymerized by UV light to yield stable, deep blue polymeric vesicle suspensions.  相似文献   

20.
Here we report a photochemical and kinetic study of the thermal relaxation reaction of a double azobenzene system, in which two azobenzene photochromic units are connected via a phenyl ring. Upon UV irradiation, three thermally unstable isomers are formed. Kinetic studies using arrayed (1)H-NMR spectroscopy revealed four distinct barriers for the thermal reversion to the stable isomer. The double isomerised Z,Z-2 can revert thermally to the E,E-2 isomer via either of two isomerisation pathways. The thermal Z to E isomerisations are not significantly affected by the state of the neighbouring azo-switching unit in the meta position. These findings are supported by quantum chemical calculations on the thermal Z to E isomerisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号