首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional equation \(f^{m}+g^{m}=1\) can be regarded as the Fermat-type equations over function fields. In this paper, we investigate the entire and meromorphic solutions of the Fermat-type functional equations such as partial differential-difference equation \(\left( \frac{\partial f(z_{1}, z_{2})}{\partial z_{1}}\right) ^{n}+f^{m}(z_{1}+c_{1}, z_{2}+c_{2})=1\) in \(\mathbb {C}^{2}\) and partial difference equation \(f^{m}(z_{1}, \ldots , z_{n})+f^{m}(z_{1}+c_{1}, \ldots , z_{n}+c_{n})=1\) in \(\mathbb {C}^{n}\) by making use of Nevanlinna theory for meromorphic functions in several complex variables.  相似文献   

2.
In this work, we prove the Cauchy–Kowalewski theorem for the initial-value problem
$$\begin{aligned} \frac{\partial w}{\partial t}= & {} Lw \\ w(0,z)= & {} w_{0}(z) \end{aligned}$$
where
$$\begin{aligned} Lw:= & {} E_{0}(t,z)\frac{\partial }{\partial \overline{\phi }}\left( \frac{ d_{E}w}{dz}\right) +F_{0}(t,z)\overline{\left( \frac{\partial }{\partial \overline{\phi }}\left( \frac{d_{E}w}{dz}\right) \right) }+C_{0}(t,z)\frac{ d_{E}w}{dz} \\&+G_{0}(t,z)\overline{\left( \frac{d_{E}w}{dz}\right) } +A_{0}(t,z)w+B_{0}(t,z)\overline{w}+D_{0}(t,z) \end{aligned}$$
in the space \(P_{D}\left( E\right) \) of Pseudo Q-holomorphic functions.
  相似文献   

3.
In this note we investigate the relationship between the following integrals: $$\int_{U}\mid f^{(n)}(z)\mid^{p}\mid f^{(k)}(z)\mid^{q}(1-\mid z\mid )^{np+kq+\alpha}dm\ \ \ {\rm and}\ \ \ \int_{U}\mid f^{\prime}\mid^{p+q}(1-\mid z\mid)^{\alpha}dm$$ where 0 < p,q < ∞, α > ?1, k,n ∈ N ∪{0} and where ? is an arbitrary analytic function on the unit disc U.  相似文献   

4.
Let Co(α) denote the class of concave univalent functions in the unit disk ${\mathbb{D}}$ . Each function ${f\in Co(\alpha)}$ maps the unit disk ${\mathbb{D}}$ onto the complement of an unbounded convex set. In this paper we find the exact disk of variability for the functional ${(1-|z|^2)\left ( f^{\prime\prime}(z)/f^{\prime}(z)\right), f\in Co(\alpha)}$ . In particular, this gives sharp upper and lower estimates for the pre-Schwarzian norm of concave univalent functions. Next we obtain the set of variability of the functional ${(1-|z|^2)\left(f^{\prime\prime}(z)/f^{\prime}(z)\right), f\in Co(\alpha)}$ whenever f′′(0) is fixed. We also give a characterization for concave functions in terms of Hadamard convolution. In addition to sharp coefficient inequalities, we prove that functions in Co(α) belong to the H p space for p < 1/α.  相似文献   

5.
We consider the equation \(\rm f^{\prime\prime}+{A}(z){f}=0\) with linearly independent solutions f1,2, where A(z) is a transcendental entire function of finite order. Conditions are given on A(z) which ensure that max{λ(f1),λ(f2)} = ∞, where λ(g) denotes the exponent of convergence of the zeros of g. We show as a special case of a further result that if P(z) is a non-constant, real, even polynomial with positive leading coefficient then every non-trivial solution of \(\rm f^{\prime\prime}+{e}^P{f}=0\) satisfies λ(f) = ∞. Finally we consider the particular equation \(\rm f^{\prime\prime}+({e}^Z-K){f}=0\) where K is a constant, which is of interest in that, depending on K, either every solution has λ(f) = ∞ or there exist two independent solutions f1, f2 each with λ(fi) 1.  相似文献   

6.
In this paper, we investigate the Hyers–Ulam stability of the following quartic equation $$\begin{array}{ll} {\sum\limits^{n}_{k=2}}\left({\sum\limits^{k}_{i_{1}=2}}{\sum\limits^{k+1}_{i_{2}=i_{1}+1}} \ldots {\sum\limits^{n}_{i_{n-k+1}=i_{n-k}+1}}\right)\\ \quad\times f \left({\sum\limits^{n}_{i=1,i \neq i_{1},\ldots,i_{n-k+1}}} x_{i}-{\sum\limits^{n-k+1}_{r=1}}x_{i_{r}}\right) + f \left({\sum\limits^{n}_{i=1}}x_{i}\right)\\ \quad-2^{n-2}{\sum\limits^{}_{1 \leq{i} \leq{j} \leq{n}}}(f(x_{i} + x_{j}){+f(x_{i} - x_{j})){+2^{n-5}(n - 2){\sum\limits^{n}_{i=1}}f(2x_{i})}} = \theta \end{array} $$ $({n \in \mathbb{N}, n \geq 3})$ in β-homogeneous F-spaces.  相似文献   

7.
Huixue Lao 《Acta Appl Math》2010,110(3):1127-1136
Let L(sym j f,s) be the jth symmetric power L-function attached to a holomorphic Hecke eigencuspform f(z) for the full modular group, and \(\lambda_{\mathrm{sym}^{j}f}(n)\) denote its nth coefficient. In this paper we are able to prove that
$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{3}f}(n)\bigg|^{2}dy=O\bigl(x^{2}\bigr),$
and
$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{4}f}(n)\bigg|^{2}dy=O\bigl(x^{\frac{11}{5}}\log x\bigr).$
  相似文献   

8.
D. D. Hai 《Positivity》2018,22(5):1269-1279
We prove the existence of positive solutions for the boundary value problem
$$\begin{aligned} \left\{ \begin{array}{ll} y^{\prime \prime }+m^{2}y=\lambda g(t)f(y), &{}\quad 0\le t\le 2\pi , \\ y(0)=y(2\pi ), &{}\quad y^{\prime }(0)=y^{\prime }(2\pi ), \end{array} \right. \end{aligned}$$
for certain range of the parameter \(\lambda >0\), where \(m\in (1/2,1/2+\varepsilon )\) with \(\varepsilon >0\) small, and f is superlinear or sublinear at \(\infty \) with no sign-conditions at 0 assumed.
  相似文献   

9.
In this paper, we consider the axisymmetric MHD system with nearly critical initial data having the special structure: \(u_{0}=u_{0}^{r} e_{r}+u^{\theta}_{0} e_{\theta}+u_{0}^{z} e_{z}\), \(b_{0}=b_{0}^{\theta}e_{\theta}\). We prove that, this system is globally well-posed provided the scaling-invariant norms \(\|ru^{\theta}_{0}\|_{L^{\infty}}\), \(\|r^{-1}b^{\theta}_{0}\| _{L^{\frac{3}{2}}}\) are sufficiently small.  相似文献   

10.
In this work, we consider the second-order discontinuous equation in the real line,
$$u^{\prime \prime}(t)-ku(t) = f( t, u(t), u^{\prime}(t)), \quad a.e.t \in \mathbb {R},$$
with \({k > 0}\) and \({f : \mathbb{R}^{3} \rightarrow \mathbb{R}}\) an \({L^{1}}\)-Carathéodory function. The existence of homoclinic solutions in presence of not necessarily ordered lower and upper solutions is proved, without periodicity assumptions or asymptotic conditions. Some applications to Duffing-like equations are presented in last section.
  相似文献   

11.
Let \(\mathbb {F}_{q}\) be the finite field with \(q=p^{m}\) elements, where p is an odd prime and m is a positive integer. For a positive integer t, let \(D\subset \mathbb {F}^{t}_{q}\) and let \({\mathrm {Tr}}_{m}\) be the trace function from \(\mathbb {F}_{q}\) onto \(\mathbb {F}_{p}\). In this paper, let \(D=\{(x_{1},x_{2},\ldots ,x_{t}) \in \mathbb {F}_{q}^{t}\setminus \{(0,0,\ldots ,0)\} : {\mathrm {Tr}}_{m}(x_{1}+x_{2}+\cdots +x_{t})=0\},\) we define a p-ary linear code \(\mathcal {C}_{D}\) by
$$\begin{aligned} \mathcal {C}_{D}=\{\mathbf {c}(a_{1},a_{2},\ldots ,a_{t}) : (a_{1},a_{2},\ldots ,a_{t})\in \mathbb {F}^{t}_{q}\}, \end{aligned}$$
where
$$\begin{aligned} \mathbf {c}(a_{1},a_{2},\ldots ,a_{t})=({\mathrm {Tr}}_{m}(a_{1}x^{2}_{1}+a_{2}x^{2}_{2}+\cdots +a_{t}x^{2}_{t}))_{(x_{1},x_{2},\ldots ,x_{t}) \in D}. \end{aligned}$$
We shall present the complete weight enumerators of the linear codes \(\mathcal {C}_{D}\) and give several classes of linear codes with a few weights. This paper generalizes the results of Yang and Yao (Des Codes Cryptogr, 2016).
  相似文献   

12.
Using the fixed point method, we investigate the generalized Hyers–Ulam stability of the ternary homomorphisms and ternary derivations between fuzzy ternary Banach algebras for the additive functional equation of n-Apollonius type, namely
$${\sum_{i=1}^{n} f(z-x_{i}) = -\frac{1}{n} \sum_{1 \leq i < j \leq n} f(x_{i}+x_{j}) + n f (z-\frac{1}{n^{2}} \sum_{i=1}^{n}x_{i}),}$$
where \({n \geq 2}\) is a fixed positive integer.
  相似文献   

13.
Let \(a_{\ell ,m}(n)\) denote the number of \((\ell ,m)\)-regular partitions of a positive integer n into distinct parts, where \(\ell \) and m are relatively primes. In this paper, we establish several infinite families of congruences modulo 2 for \(a_{3,5}(n)\). For example,
$$\begin{aligned} a_{3, 5}\left(2^{6\alpha +4}5^{2\beta }n+\frac{ 2^{6\alpha +3}5^{2\beta +1}-1}{3}\right) \equiv 0 , \end{aligned}$$
where \(\alpha , \beta \ge 0\).
  相似文献   

14.
We prove that, for all integers \(n\ge 1\),
$$\begin{aligned} \Big (\sqrt{2\pi n}\Big )^{\frac{1}{n(n+1)}}\left( 1-\frac{1}{n+a}\right) <\frac{\root n \of {n!}}{\root n+1 \of {(n+1)!}}\le \Big (\sqrt{2\pi n}\Big )^{\frac{1}{n(n+1)}}\left( 1-\frac{1}{n+b}\right) \end{aligned}$$
and
$$\begin{aligned} \big (\sqrt{2\pi n}\big )^{1/n}\left( 1-\frac{1}{2n+\alpha }\right) <\left( 1+\frac{1}{n}\right) ^{n}\frac{\root n \of {n!}}{n}\le \big (\sqrt{2\pi n}\big )^{1/n}\left( 1-\frac{1}{2n+\beta }\right) , \end{aligned}$$
with the best possible constants
$$\begin{aligned}&a=\frac{1}{2},\quad b=\frac{1}{2^{3/4}\pi ^{1/4}-1}=0.807\ldots ,\quad \alpha =\frac{13}{6} \\&\text {and}\quad \beta =\frac{2\sqrt{2}-\sqrt{\pi }}{\sqrt{\pi }-\sqrt{2}}=2.947\ldots . \end{aligned}$$
  相似文献   

15.
For a constant $\alpha \in (-\frac{\pi }{2},\frac{\pi }{2})$ and $0\!\le \!\rho \!<\!1,$ we define the set of all $\alpha $ -spiral-like functions of order $\rho $ consisting of functions $f$ that are univalent on the unit disk and satisfy the condition $ Re\left(e^{-i\alpha }\frac{zf^{\prime }(z)}{f(z)}\right)>\rho \cos \alpha $ for any point $z$ in the unit disk. In the present paper, we shall give the best estimate for the norm of the pre-Schwarzian derivative ${\text{ T}}_f(z)=f^{\prime \prime }(z)/f^{\prime }(z)$ where $||T_f||= \sup (1-|z|^2)|T_f(z)|$ .  相似文献   

16.
The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in \({\mathbb {R}}^{n}\). In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let \(\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}\), \(0\le \beta <n\) and \(\tau >0\). Then there exists a constant \(C=C\left( n,\beta \right) >0\) such that for all \(0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}\) and \(u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} \) with the affine energy \(~{\mathcal {E}}_{n}\left( u\right) <1\), we have
$$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$
Moreover, the constant \(\left( 1-\frac{\beta }{n}\right) \alpha _{n}\) is the best possible in the sense that there is no uniform constant \(C(n, \beta )\) independent of u in the above inequality when \(\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}\). Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let \(0\le \beta <2m\) and \(\tau >0\). Then there exists a constant \(C=C\left( m,\beta ,\tau \right) >0\) such that
$$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$
for all \(0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\). When \(\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\), the supremum is infinite. In the above, we use
$$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$
The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation
$$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$
where the nonlinearity f has the critical exponential growth.
  相似文献   

17.
Let \(\Omega := ( a,b ) \subset \mathbb {R}\), \(m\in L^{1} ( \Omega ) \) and \(\phi :\mathbb {R\rightarrow R}\) be an odd increasing homeomorphism. We consider the existence of positive solutions for problems of the form
$$\begin{aligned} \left\{ \begin{array} [c]{ll} -\phi ( u^{\prime } ) ^{\prime }=m ( x ) f ( u) &{}\quad \text {in } \Omega ,\\ u=0 &{}\quad \text {on } \partial \Omega , \end{array} \right. \end{aligned}$$
where \(f: [ 0,\infty ) \rightarrow [ 0,\infty ) \) is a continuous function which is, roughly speaking, superlinear with respect to \(\phi \). Our approach combines the Guo-Krasnoselski? fixed-point theorem with some estimates on related nonlinear problems. We mention that our results are new even in the case \(m\ge 0\).
  相似文献   

18.
We provide an elementary proof of the left-hand side of the following inequality and give a new upper bound for it.
$$\begin{aligned} \bigg [\frac{n!}{x-(x^{-1/n}+\alpha )^{-n}}\bigg ]^{\frac{1}{n+1}}&<((-1)^{n-1}\psi ^{(n)})^{-1}(x) \\&<\bigg [\frac{n!}{x-(x^{-1/n}+\beta )^{-n}}\bigg ]^{\frac{1}{n+1}}, \end{aligned}$$
where \(\alpha =[(n-1)!]^{-1/n}\) and \(\beta =[n!\zeta (n+1)]^{-1/n}\), which was proved in Batir (J Math Anal Appl 328:452–465, 2007), and we prove the following inequalities for the inverse of the digamma function \(\psi \).
$$\begin{aligned} \frac{1}{\log (1+e^{-x})}<\psi ^{-1}(x)< e^{x}+\frac{1}{2}, \quad x\in \mathbb {R}. \end{aligned}$$
The proofs are based on nice applications of the mean value theorem for differentiation and elementary properties of the polygamma functions.
  相似文献   

19.
In this paper, we consider the following class of singular two-point boundary value problem posed on the interval x ?? (0, 1]
$$\begin{array}{@{}rcl@{}} (g(x)y^{\prime})^{\prime}=g(x)f(x,y),\\ y^{\prime}(0)=0,\mu y(1)+\sigma y^{\prime}(1)=B. \end{array} $$
A recursive scheme is developed, and its convergence properties are studied. Further, the error estimation of the method is discussed. The proposed scheme is based on the integral equation formalism and optimal homotopy analysis method in which a recursive scheme is established without any undetermined coefficients. The original differential equation is transformed into an equivalent integral equation to remove the singularity. The integral equation is then made free of undetermined coefficients by imposing the boundary conditions on it. Finally, the integral equation without any undetermined coefficients is efficiently treated by using optimal homotopy analysis method for finding the numerical solution. The optimal control-convergence parameter involved in the components of the series solution is obtained by minimizing the squared residual error equation. The present method is applied to obtain numerical solution of singular boundary value problems arising in various physical models, and numerical results show the advantages of our method over the existing methods.  相似文献   

20.
We introduce a natural definition for sums of the form
$\sum_{\nu=1}^xf(\nu)$
when the number of terms x is a rather arbitrary real or even complex number. The resulting theory includes the known interpolation of the factorial by the Γ function or Euler’s little-known formula \(\sum_{\nu=1}^{-1/2}\frac{1}{\nu}=-2\ln 2\).
Many classical identities like the geometric series and the binomial theorem nicely extend to this more general setting. Sums with a fractional number of terms are closely related to special functions, in particular the Riemann and Hurwitz ζ functions. A number of results about fractional sums can be interpreted as classical infinite sums or products or as limits, including identities like
$\begin{array}{l}\displaystyle\lim_{n\to\infty}\Biggl[e^{\frac{n}{4}(4n+1)}n^{-\frac{1}{8}-n(n+1)}(2\pi)^{-\frac{n}{2}}\prod_{k=1}^{2n}\Gamma\biggl(1+\frac{k}{2}\biggr)^{k(-1)^k}\Biggr]\\[12pt]\quad =\displaystyle\sqrt[12]{2}\exp\biggl(\frac{5}{24}-\frac{3}{2}\zeta'(-1)-\frac{7\zeta(3)}{16\pi^2}\biggr),\end{array}$
some of which seem to be new; and even for those which are known, our approach provides a new method to derive these identities and many others.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号